Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How drought-tolerant grasses came to be

24.11.2011
New grass family tree reveals C4 photosynthesis is an evolutionary 1-way street

If you eat bread stuffing or grain-fed turkey this Thanksgiving, give thanks to the grasses — a family of plants that includes wheat, oats, corn and rice. Some grasses, such as corn and sugar cane, have evolved a unique way of harvesting energy from the sun that's more efficient in hot, arid conditions. A new grass family tree reveals how this mode of photosynthesis came to be.


Grasses that use the C4 photosynthetic pathway -- like these tufts of Enneapogon scaber from Namibia -- are particularly good at growing in hot, dry environments. Credit: Photo by study co-author J. Travis Columbus, Rancho Santa Ana Botanic Garden and Claremont Graduate University.

The results may one day help scientists develop more drought-tolerant grains, say scientists working at the U. S. National Evolutionary Synthesis Center.

From the grasslands of North America, to the pampas of South America, to the steppes of Eurasia and the savannas of the tropics, the grass family contains more than 10,000 species, including the world's three most important crops: wheat, rice and corn. We rely on grasses for sugar, liquor, bread, and livestock fodder.

Like all plants, grasses harvest energy from sunlight by means of photosynthesis. But grasses use two strategies that differ in how they take up carbon dioxide from the air and convert it into the starches and sugars vital to plant growth. The majority of grasses use a mode of photosynthesis called the C3 pathway, but many species — especially those in hot, tropical climates — use an alternate mode of photosynthesis known as C4. In hot, arid environments, C4 grasses such as maize, sugar cane, sorghum and millet have a leg up over C3 plants because they use water more efficiently.

An international team of researchers wanted to figure out how many times, and when, the C4 strategy came to be. To find out, they used DNA sequence data from three chloroplast genes to reconstruct the grass family tree. The resulting phylogeny represents 531 species, including 93 species for which DNA sequence data was previously unavailable.

"By working collaboratively across many labs, from the US to Argentina to Ireland to Switzerland — with some people providing new plant material, and others doing the DNA sequencing — we were able to get a lot done in a very short amount of time," said co-author Erika Edwards of Brown University.

The results suggest that the C4 pathway has evolved in the grasses more than 20 separate times within the last 30 or so million years, Edwards said.

What's most surprising, she added, is that C4 evolution seems to be a one-way street – i.e., once the pathway evolves, there's no turning back. "We can't say whether it is evolutionarily 'impossible', or whether there simply hasn't been a good reason to do it, but it seems increasingly unlikely that any C4 grasses have ever reverted to the C3 condition," Edwards said.

"The new tree will be extremely useful for anyone who works on grasses," she added.

For example, scientists are currently trying to engineer the C4 photosynthetic pathway into C3 crops like rice to produce more stress-tolerant plants. By helping researchers identify pairs of closely related C3 and C4 species, the evolutionary relationships revealed in this study could help pinpoint the genetic changes necessary to do that.

"The next challenge is getting these species into cultivation and studying them closely, and ideally, sequencing their genomes," Edwards said.

The results will be published this week in the journal New Phytologist.

CITATION: Grass Phylogeny Working Group II (2011). "New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins." New Phytologist. doi: 10.1111/j.1469-8137.2011.03972.x

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>