Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drought-exposed leaves adversely affect soil nutrients, study shows

06.04.2011
Chemical changes in tree leaves subjected to warmer, drier conditions that could result from climate change may reduce the availability of soil nutrients, according to a Purdue University study.

Jeff Dukes, an associate professor of forestry and natural resources, found that red maple leaves accumulate about twice as much tannin when exposed to hot, droughtlike conditions. Those tannins, which defend leaves from herbivores and pathogens, were shown to interfere with the function of common enzymes in soil.

"When the leaves are particularly water-stressed by drought or drought with higher temperatures, we see more protective compounds, more tannins and a change in the chemistry of the tannins," said Dukes, whose findings were published in the early online version of the journal New Phytologist. "This suggests that when these leaves fall, they may slow down soil processes such as decomposition and nutrient cycling. This could, in turn, affect plant growth and nutrient uptake."

The findings are the first for the Boston Area Climate Experiment, a National Science Foundation-funded project that Dukes directs. Plants on several field plots are exposed to various future climate scenarios using heaters and other means to control conditions.

"We've basically built a big time machine that moves different plots of land into different possible futures by changing temperatures and precipitation levels," Dukes said.

The increase in leaf tannins observed in this experiment could cause leaves to decompose more slowly and also interfere with critical soil enzymes, leaving fewer nutrients for plants. The tannins in the red maple leaves also were chemically different, making them interact more strongly with the soil enzymes.

Dukes said the tannin issue could effect a sort of tug-of-war in the carbon cycle. With fewer nutrients, plants would take carbon dioxide out of the air more slowly. But if fallen leaves are decomposing slower, then the carbon would be released back to the atmosphere more slowly.

"This is an issue that could affect many natural processes," Dukes said. "We just don't know what the net result will be."

In this experiment, leaves were removed from the experiment plots and tested in laboratories. Dukes said he would next test other plants' leaves exposed to similar conditions to see how their tannins are affected. He also will test his findings in the field to see how an increase in tannins affects soil in a natural setting.

The work was carried out in collaboration Nishanth Tharayil at Clemson University, as well as researchers at Purdue, Clemson University, the University of Massachusetts Boston and Natural Resources Canada.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Source: Jeff Dukes, 765-494-1446, jsdukes@purdue.edu
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>