Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Drives Our Genes? Researchers Map the First Complete Human Epigenome

16.10.2009
Although the human genome sequence faithfully lists (almost) every single DNA base of the roughly 3 billion bases that make up a human genome, it doesn’t tell biologists much about how its function is regulated.

Now, researchers at the Salk Institute provide the first detailed map of the human epigenome, the layer of genetic control beyond the regulation inherent in the sequence of the genes themselves.

“In the past we’ve been limited to viewing small snippets of the epigenome,” says senior author Joseph Ecker, Ph.D., professor and director of the Genomic Analysis Laboratory at the Salk Institute and a member of the San Diego Epigenome Center. “Being able to study the epigenome in its entirety will lead to a better understanding of how genome function is regulated in health and disease but also how gene expression is influenced by diet and the environment.”

Their study, published in the Oct. 14, 2009 advance online edition of the journal Nature, compared the epigenomes of human embryonic stem cells and differentiated connective cells from the lung called fibroblasts, revealing a highly dynamic, yet tightly controlled, landscape of chemical signposts known as methyl-groups. The head-to-head comparison brought to light a novel DNA methylation pattern unique to stem cells, which may explain how stem cells establish and maintain their pluripotent state, the researchers say.

The emergence of epigenetics has already changed the way researchers think about how disease arises and how physicians treat it. Epigenetic changes play a crucial role in the development of cancer and some drugs that directly interact with the epigenome have been approved for the treatment of lymphoma and lung cancer and are now tested against a number of other cancer types. “Unless we know how these drugs affect the entire epigenome, we don’t really understand their full mechanism of action,” says Ecker.

Recognizing the central role of the epigenome in many areas of biology and medicine the National Institutes of Health launched a five-year Roadmap Epigenomics Program in 2008. The San Diego Epigenome Center, headed by Bing Ren, Ph.D., Professor of Cellular and Molecular Medicine at the University of California, San Diego School of Medicine and head of the Laboratory of Gene Regulation at the Ludwig Institute for Cancer Research, is an integral part of the five-year, $190 million push to accelerate research into modifications that alter genetic behavior across the human genome.

The current study, to which Ren and additional members of the Center located at the University of Wisconsin and the Morgridge Institute for Research in Madison, Wisconsin, also contributed, is not only the first complete high-resolution map of an epigenome superimposed on the human genome, but also the first study to be published as a direct result of the Roadmap Epigenomics Program.

“This paper exemplifies the goals of the NIH Roadmap for Medical Research’s Epigenomics Program,” said Linda Birnbaum, Ph.D., director of the National Institute of Environmental Health Sciences, one of the NIH institutes funding this program. “The science has matured to a point that we can now map the epigenome of a cell. This paper documents the first complete mapping of the methylome, a subset of the entire epigenome, of 2 types of human cells - an embryonic stem cell and a human fibroblast line. This will help us better understand how a diseased cell differs from a normal cell, which will enhance our understanding of the pathways of various diseases.“

Epigenetic signals can tinker with genetic information in at least two ways: One targets histones, the “spools” around which DNA winds and which control access to DNA. The other is DNA methylation, a chemical modification of one letter, C (cytosine), of the four letters (A, G, C, and T) that comprise our DNA. In the last couple of years, Ecker’s laboratory started to zoom in on genomic methylation patterns, which are essential for normal development and are associated with a number of key cellular processes, including carcinogenesis.

Perfecting the technique in Arabidopsis thaliana, a plant whose genome is 25 times smaller than the human genome, Ryan Lister, Ph.D., a postdoctoral researcher in Ecker’s lab and co-first author on the current study, developed an ultra high-throughput methodology to precisely determine whether each C in the genome is methylated or not, and layer the resulting epigenomic map upon the exact genome it regulates.

He then put the brand new technology to work to map the epigenomes of differentiated fibroblast cells and human embryonic stem cells (hESCs.) “We wanted to know how the epigenome of a differentiated cell that’s programmed to perform a specific job differs from the epigenome of a pluripotent stem cell, that has the potential to turn into any other cell type,” Lister says.

Just as expected, in fibroblast cells the majority of Cs followed by a G carried a methyl-group, a pattern often referred to as CG-methylation. But much to the Salk researchers’ surprise, in embryonic stem cells about a quarter of all methylation events occurred in a different context.

“Non-CG methylation is not completely unheard of -- people have seen it in dribs and drabs, even in stem cells. But nobody expected that it would be so extensive,” says postdoctoral researcher and co-first author Mattia Pelizzola, who along with Lister undertook the extensive task of extracting and analyzing the epigenome data from these vast sequence datasets. “The whole field had been focused on CG methylation, and non-CG methylation was often considered a technical artifact.”

To confirm their finding, the authors then targeted several regions in a second hESC line, as well as in fibroblast cells that had been reprogrammed into so called induced pluripotent stem (iPS) cells. “They both had the same high level of non-CG methylation, which was lost when we forced them to differentiate,” says Pelizzola.

Being able to create high resolutions maps of the human epigenome, Ecker’s group will now begin to examine how it changes during normal development as well as examining a variety of disease states. “For the first time, we will be able to see the fine details of how DNA methylation changes in stem cells and other cells as they grow and develop into new cell types,” he says. “We believe this knowledge will be extremely valuable for understanding diseases such as cancer and possibly even mental disorders. Right now we just don’t know how the epigenome changes during the aging process or how the epigenome is impacted by our environment or diet.”

This work was supported in part by grants from the Mary K. Chapman Foundation, the NIH, the California Institute for Regenerative Medicine, the Australian Research Council Centre of Excellence Program and the Morgridge Institute for Research.

Researchers who also contributed to the work include Robert H. Dowen and Joseph R. Nery in the Genomic Analysis Laboratory, Gary Hon, Leonard Lee, Zhen Ye, Que-Minh Ngo and Lee Edsall at the Ludwig Institute for Cancer Research at the University of California San Diego, Julian Tonti-Filippini and A. Harvey Millar at the ARC Center of Excellence in Plant Energy Biology in Crawley, Australia, Jessica Antosiewicz-Bourget, Ron Stewart, Victor Ruotti and James A. Thomson at the Morgridge Institute for Research and at the Genome Center of Wisconsin, both at the University of Wisconsin in Madison.

About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused on both discovery and mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes, and cardiovascular disorders by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>