Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drinking alcohol during pregnancy may damage semen quality in sons

29.06.2010
Mothers who drink alcohol while they are pregnant may be damaging the fertility of their future sons, according to new research to be presented at the 26th annual meeting of the European Society of Human Reproduction and Embryology in Rome today (Tuesday 29 June).

Doctors in Denmark found that if mothers had drunk 4.5 or more drinks a week while pregnant, then the sperm concentration of their sons, measured about 20 years later, was a third lower in comparison to men who were not exposed to alcohol while in the womb. A drink was measured as 12 grams of alcohol, which is the equivalent to one 330 ml beer, one small (120 ml) glass of wine or one glass of spirits (40 ml).

Dr Cecilia Ramlau-Hansen, senior researcher at the Department of Occupational Medicine, Aarhus University Hospital (Denmark) and clinical associate professor at the Department of Epidemiology, Institute of Public Health, University of Aarhus, told a news briefing: "Our study shows that there is an association between drinking a moderate amount of alcohol (about four to five drinks a week) during pregnancy and lower sperm concentrations in sons. However, because this is an observational study we cannot say for certain that the alcohol causes the lower sperm concentrations. It is possible that drinking alcohol during pregnancy has a harmful effect on the foetal semen-producing tissue in the testes – and thereby on semen quality in later life – but our study is the first of its kind, and more research within this area is needed before any causal link can be established or safe drinking limits proposed."

Dr Ramlau-Hansen and her colleagues studied 347 sons of 11,980 women with singleton pregnancies who were recruited to the Danish "Healthy habits for two" study between 1984-1987. Around the 36th week of pregnancy the mothers answered a questionnaire on lifestyles and health. The sons were followed up between 2005-2006, when they were aged between 18-21, and semen and blood samples were collected and analysed.

The researchers divided the sons into four groups, ranging from those who were least exposed to alcohol (their mothers had drunk less than one drink a week) – and this was the reference group against which the other groups were measured – to those whose mothers drank 1-1.5 drinks a week, 2-4 drinks a week, or 4.5 or more drinks per week.

They found that sons of mothers drinking 4.5 or more alcoholic drinks a week had average sperm concentrations of 25 million per millilitre, while the sons who were least exposed to alcohol had sperm concentrations of 40 million/ml. After adjusting for various confounding factors, they found the sons in the group most exposed to alcohol had an average sperm concentration that was approximately 32% lower than that in the least exposed group.

The World Health Organization defines a "normal" level of sperm concentration as being approximately 20 million/ml or more. Dr Ramlau-Hansen said: "The reduced sperm concentrations in the most exposed men are rather close to the lower end of the WHO's normal range for fertility. The probability of conception increases with increased sperm concentration up to 40 million/ml and so it is possible that the most exposed men could be less fertile than the least exposed."

She found that semen volume and total sperm count (which also affect a man's fertility) were associated with prenatal alcohol exposure; these were highest in sons whose mothers drank 1-1.5 drinks a week. The researchers could find no association between alcohol exposure and the movement and shape of the sperm or with any reproductive hormones such as testosterone.

Dr Ramlau-Hansen said: "Our finding that sons prenatally exposed to 1-1.5 drinks per week had higher semen volume and total sperm count compared to the least exposed group is not surprising and is quite a common finding when studying alcohol. It could indicate that small amounts of alcohol have a beneficial effect (for example, on the semen-producing tissue in the foetal testes), but, in fact, we believe this result may be biased by the characteristics of the women drinking small amounts of alcohol during pregnancy or by inaccurate reporting of alcohol consumption. Therefore, it is not possible to draw a firm conclusion from this result."

The researchers also investigated whether fathers' alcohol consumption had any effect. "We investigated the association between fathers' total alcohol intake and semen quality in the sons and found that paternal alcohol was not associated with semen volume or sperm concentration. This finding suggests that the observed associations between maternal alcohol consumption and sons' semen quality are not confounded by lifestyle factors that are shared by a couple, such as smoking," said Dr Ramlau-Hansen.

She concluded: "If further research shows that maternal alcohol consumption is a cause of reduced semen concentration in male offspring, then we are a bit closer to an explanation of why semen quality may have decreased during the last decades and why it differs between populations. If exposure to alcohol in foetal life causes poor semen quality in adult life, we would expect that populations with many pregnant women drinking, possibly heavily, in pregnancy would have lower fertility in comparison with populations of where pregnant women do not drink."

Emma Mason | EurekAlert!
Further information:
http://www.eshre.eu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>