Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dresden scientists generate model systems for retinal disease research

14.04.2016

Scientists at the German Center for Neurodegenerative Diseases (DZNE) and the DFG Research Center for Regenerative Therapies Dresden (CRTD) – Cluster of Excellence at the Technische Universität Dresden have created 3D retina tissue derived from stem cells. To generate these so called retina organoids, the researchers developed a novel protocol that is reliable and more efficient than previous methods. Based on these model systems they are planning to investigate eye diseases and potential strategies for treatment. They report on this in the scientific journal “Stem Cell Reports.”

Age-related macular degeneration and other diseases of the retina, which result in the progressive loss of neuronal cells in the eyes, are among the most frequent causes of impaired vision and blindness. To date, there are no cures for these diseases and knowledge on their mechanisms is scarce.


Retinal Organoid under the microscope

© CRTD

“Stem cell based technologies promise new avenues to study these conditions in the laboratory. In particular, we will profit from human cell based disease model systems,” explains Dr. Mike Karl, who leads a research group at the DZNE’s Dresden site and the CRTD.

Thus, Karl and his colleagues have developed a new protocol for the production of organ-like tissues, also called “organoids”, which resemble the retina of mice and humans. These model systems are generated in cell culture from pluripotent stem cells, which have the power to develop into any type of cell in our body.

The Biotechnology Center (BIOTEC) of the TU Dresden including the research group of Dr. Konstantinos Anastassiadis also participated in the project. From studying these retinal organoids the scientists hope to gain new insights on the causes of retinal diseases. “We thereby intend to facilitate the development of potential therapeutic drugs and treatment concepts,” explains Karl.

Compared to previous methods, the Dresden scientists were able to significantly improve the production of 3D retina organoids. Their new approach results in high production efficiency and reproducibility. “Our experimental protocol reliably recapitulates key characteristics of retinal development in vivo. Furthermore, it offers flexibility. We could therefore tailor the organoids to specific questions that we want to study,” comments DZNE researcher Manuela Völkner, lead author of the current publication. In particular, the researchers succeeded to raise the production of cone photoreceptor neurons. These sensory cells are essential for our color vision and high visual acuity, especially for reading.

“We now have the means to produce larger amounts of these precious cells, which is a premise for certain studies. This includes basic research as well as studies in regenerative medicine,” explains Karl. “For instance, several labs are pursuing the idea to restore vision due to cell loss by retinal cell transplantation. There is certainly a long way to go. But our model systems might help to develop such therapeutic strategies.”

These most recent successes of Dresden researchers once again demonstrate the potential that is harnessed through the close collaboration of several disciplines at the life science campus in Dresden-Johannstadt.


Scientific publication:

„Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis“, Manuela Völkner, Marlen Zschätzsch, Maria Rostovskaya, Rupert W. Overall, Volker Busskamp, Konstantinos Anastassiadis, Mike O. Karl, Stem Cell Reports,
http://dx.doi.org/10.1016/j.stemcr.2016.03.001

Press Contact:

Franziska Clauß, M.A.
CRTD Press Officer
Phone: +49 351 458 82065, e-Mail: franziska.clauss@crt-dresden.de

Dr. Marcus Neitzert
DZNE Press and Public Relations
Phone: +49 228 43302271, e-Mail: marcus.neitzert@dzne.de

Founded in 2006, the DFG Research Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at the TU Dresden has passed the third phase of the Excellence Initiative which aims at promoting top-level research and improving the quality of German universities and research institutions. The goal of the CRTD is to explore the body's self-healing potential and to develop completely new, regenerative therapies for hitherto incurable diseases. The key areas of research include haematology and immunology, diabetes, neurodegenerative diseases and bone regeneration. At the moment, eight professors and ten group leaders are working at the CRTD – integrated into an interdisciplinary network of 87 members at seven different institutions within Dresden. In addition, 21 partners from industry are supporting the network. The synergies in the network allow for a fast translation of results from basic research to clinical applications.
www.crt-dresden.de

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution within the Helmholtz Association of German Research Centers with nine sites across Germany (Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten). The DZNE cooperates closely with universities, their clinics and other research facilities. Cooperation partners in Dresden are the Technische Universität Dresden and the Universitätsklinikum Carl Gustav Carus.

www.dzne.de/en 

Enclosures:

Portrait: Dr. Mike O. Karl © CRTD

Microscope image: Retinal Organoid under the microscope: The following cell types are labeled in a tissue section: Cyan = photoreceptors (marker CRX), red = bipolar neurons & glia cells (marker VSX2), green = amacrine neurons (marker hPAX6GFP) © CRTD

Infographic: Production of retinal organoids from pluripotent stem cells © CRTD based on Stem Cell Reports)

Weitere Informationen:

http://dx.doi.org/10.1016/j.stemcr.2016.03.001

Franziska Clauß | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>