Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DREAM: one gene regulates pain, learning and memory

15.01.2009
The DREAM-gene which is crucial in regulating pain perception seems to also influence learning and memory. This is the result of studies carried out by researchers in Seville (Spain) and Vienna (Austria). The new findings could help explain the mechanisms of Alzheimer's disease and yield a potential new therapeutic target.

In 2002, a group of scientists at the University of Toronto was able to identify a gene which they dubbed DREAM (downstream regulatory element antagonistic modulator). The gene's function was highly interesting: it obviously served as a key regulator in the perception of pain. Mice who lacked the gene showed clear signs of markedly reduced sensitivity to all kinds of pain, whether chronic or acute. Otherwise, the mice appeared perfectly normal.

The work leading to these findings was carried out in the lab of Josef Penninger, then principal investigator at the Amgen Institute in Toronto. The publication describing the gene's function was received with great interest (Cell, Vol. 108, 31-43, 11.1.2002) and DREAM was subsequently termed the "Master-Gene of pain perception".

Josef Penninger, meanwhile scientific director of IMBA, the Institute of Molecular Biotechnology of the Austrian Academy of Sciences in Vienna, continued to wonder what other surprises DREAM might have in store. In a collaborative effort with neurobiologists from the University Pablo de Olivade (Seville) he devised experiments to follow up on the previous findings. A team of scientists under Ángel Manuel Carrión subjected DREAM-less mice to numerous neurological tests and analyzed their memory skills. The results were striking: without DREAM, mice were able to learn faster and remember better. Fascinatingly, the brains of aged mice (18 months) showed learning capacities similar to those of very young mice.

Thus, DREAM turns out to be a genetic candidate for explaining old age dementia. Even a causal connection to Alzheimer's disease seems plausible. Studies published in mid 2008 suggest that the devastating condition may be related to Calcium regulation gone awry. The accumulation of amyloid plaques in brain cells, usually blamed for Alzheimer's, might be a consequence of the Calcium-imbalance rather than the culprit for the disease.

And Calcium regulation is also responsible for tuning the activity of the DREAM-gene. Calcium homeostasis may thus be the link between pain perception, learning and memory. This is supported by observations of patients suffering from chronic pain: very often their ability to memorize is strikingly reduced and they need a lot more time to learn than individuals without pain.

"It is absolutely fascinating that we found a gene which at the same time regulates pain, learning and old age memory function", says Josef Penninger, "and it is of great interest to the millions of people suffering from chronic pain that we follow up on these results."

The paper "Lack of DREAM protein enhances learning and memory and slows brain aging" by Fontán-Lozano et al. has been published in the current issue of the Journal Current Biology [Curr Biol. 2009 Jan 13;19(1):54-60].

IMBA
IMBA, the Institute of Molecular Biotechnology of the Austrian Academy of Sciences, combines basic and applied research in the area of biomedicine. Interdisciplinary research groups work towards understanding the fundamental molecular underpinnings of normal and pathological behavior. The ultimate aim is to translate this knowledge into novel approaches for diagnosis, prevention and therapy of diseases. IMBA is financed by the City of Vienna and the Austrian Government.
IMP-IMBA Research Center
The Research Institute of Molecular Pathology (IMP), established in 1988 by Boehringer Ingelheim, and the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), which went into operation in 2003, have agreed on a close research collaboration. Under the name "IMP-IMBA Research Center", the two institutes share most of the administrative and scientific infrastructure. Together, IMBA and IMP employ over 400 people from 30 different nations. Both institutes are members of the "Campus Vienna Biocenter".
Contact:
Dr. Heidemarie Hurtl, IMBA Communications
Tel. +43 1 79730-3625
Mobile: +43 (0)664 8247910
heidemarie.hurtl@imba.oeaw.ac.at
Scientific Contact:
Prof. Josef Penninger
josef.penninger@imba.oeaw.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imba.oeaw.ac.at
http://www.imba.oeaw.ac.at/research/josef-penninger/

Further reports about: Alzheimer Biotechnology Calcium DREAM DREAM-gene IMBA Molecular brain cell chronic pain pain perception

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>