Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dramatic diversity of columbine flowers explained by a simple change in cell shape

16.11.2011
To match pollinators' probing tongues, cells in floral spurs elongate, driving rapid speciation

Columbine flowers are recognizable by the long, trailing nectar spurs that extend from the bases of their petals, tempting the taste buds of their insect pollinators.

New research at Harvard and the University of California, Santa Barbara (UCSB) helps to explain how columbines have achieved a rapid radiation of approximately 70 species, with flowers apparently tailored to the length of their pollinators' tongues.

Bees, for example, enjoy the short spurs of Aquilegia vulgaris, whereas hawkmoths favor A. longissima, whose spurs can grow to up to 16 centimeters.

According to results published today in the Proceedings of the Royal Society B, the dramatic diversity in the length of the columbines' spurs is the result of one simple change during development: the extent of cell elongation.

"The evolutionary importance of interactions between flowers and pollinators has been recognized for centuries," says co-lead author Sharon Gerbode, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS).

"Charles Darwin, observing orchids, recognized that the extraordinarily long nectar spur on the Angraecum must have evolved in concert with the equally long tongue of the moth that pollinated it, but the exact mechanism for this kind of adaptation has been a matter of speculation."

For more than 60 years, biologists have assumed that the length of columbine spurs was achieved primarily by cell proliferation. The new research reveals that proliferation plays almost no role at all in creating the vast diversity of Aquilegia species currently seen.

In fact, 99 percent of the variation in spur length can be attributed to changes in cell shape—specifically, changing round cells into long ones.

The researchers made more than 13,000 measurements to count the number of cells along the spur, as well as the area and degree of elongation of each cell.

They found that cell division ceases early in the development of the spur—when it is about 5 millimeters long. At that point, the general pattern for the spur has been established, and all species of columbine petals look the same. From that point on, the cells elongate to varying extents, creating diverse spur lengths across species.

"The controlled elongation of cells within the petal spurs was a critical evolutionary innovation for Aquilegia, a genus that is considered to be a textbook example of adaptive radiation," says co-lead author Joshua Puzey, a graduate student in Harvard's Department of Organismic and Evolutionary Biology (OEB).

The researchers confirmed their results through mathematical analysis and modeling, and through in vivo experiments to disrupt cellular structure. The next step will be to examine several major hormone pathways and cytoskeletal elements that are known to influence cell elongation and developmental timing.

"We want to understand the genes that are responsible for both the initial evolution of nectar spurs and their subsequent diversification," says co-principal investigator Elena Kramer, Professor of OEB at Harvard.

It is clear, she says, that the starting point for the spur is likely to have already been present in the last common ancestor of all the columbine species.

"Now that we understand the real developmental basis for the first appearance and diversification of spurs, we can make much more informed guesses about what genes contributed to the process," Kramer adds.

"Fundamentally, these studies will help us answer questions about the genetic basis for speciation and how developmental processes evolve."

Columbines show promise as a model organism for the study of evolution in plants because they have experienced such a rapid adaptive radiation within the past 3 million years.

"The fact that this occurred quite recently is incredibly useful," says Kramer, "because it means that the species are still very similar to each other at the genetic level."

Once researchers have identified the molecular signals that drive elongation in the spurs, the hope is that they will be able to recognize and understand speciation at all levels, from genes to populations.

"Aquilegia serve as a nice example of how environmental selective pressures may drive extreme morphologies—as here the flower and pollinator strive for an exclusive relationship," adds co-principal investigator L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics at SEAS and Professor of OEB and Physics at Harvard.

"Given that we can now manipulate spur length using externally applied drugs, our study even raises the possibility of artificially tuning that process and studying the results from an ecological perspective."

The research was supported by the MacArthur Foundation, the Wyss Institute for Biologically Inspired Engineering at Harvard, The Kavli Institute for Bionano Science and Technology at Harvard, the National Science Foundation (NSF), and the NSF-supported Materials Research Science and Engineering Center at Harvard.

UCSB faculty member Scott A. Hodges served as co-author for the research.

Caroline Perry | EurekAlert!
Further information:
http://www.seas.harvard.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>