Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Downside of Good Memory

15.05.2012
Experiencing distressing memories of a shocking experience characterizes posttraumatic stress disorder.

Scientists from the University of Basel have now discovered that a genetic factor for good memory is also associated with a heightened risk for the development of a posttraumatic stress disorder in war victims. The findings of this study will be published this week in the American journal PNAS.

There are many advantages of having a good memory. Retaining what has been learned at school comes more easily, for example, or keys are less likely to be misplaced. But having a good memory could also have a downside, namely, when shocking experiences, such as a severe accident or a rape incident, are deeply engraved into the brain. When such traumatic experiences continue to exist as painful memories, they could increase the chance of a posttraumatic stress disorder developing.

Dominique de Quervain and Andreas Papassotiropoulos, from the transfaculty research platform "Molecular and Cognitive Neurosciences" and the Biozentrum of the University of Basel, have recently discovered that car al and neutral information were likewise better remembered. Furthermore, the scientists have found that the gene variant is associated with heightened activity in memory relevant regions of the brain. More than 1000 healthy persons took part in this study in Basel.

In a second part of this study, the researchers, together with the scientists Thomas Elbert from Konstanz and Iris-Tatjana Kolassa from Ulm, investigated the effect of the gene variant on traumatic memories in around 350 survivors of the genocide in Rwanda. The scientists found that the carriers of the identified gene variant experienced more distressing memories of the shocking events during the civil war and were more likely to suffer a posttraumatic stress disorder.

This study was able to show, for the first time, a genetic link between good memory and a heightened risk for psychological trauma and suggests that PKC alpha plays an important role in the regulation of memory processes. The current study was undertaken as part of a project directed by de Quervain and Papassotiropoulos.

Neurobiological mechanism of human memory
The project, "Neurobiological mechanism of human memory" is being led by Prof. Andreas Papassotiropoulos, Director of the Division of Molecular Neuroscience and Prof. Dominique de Quervain, Director of the Division of Cognitive Neurosciences at the University of Basel. Among the goals of this project are the identification of neurobiological and molecular mechanisms of human memory and the development of new strategies for the treatment of memory disorders. This interdisciplinary project is the scientific core of the transfaculty research platform "Molecular and Cognitive Neurosciences" at the University of Basel.
Original Article
Dominique J.-F. de Quervain, Iris-Tatjana Kolassa, Sandra Ackermann, Amanda Aerni, Peter Boesiger, Philippe Demougin, Thomas Elbert, Verena Ertl, Leo Gschwind, Nils Hadziselimovic, Edveena Hanser, Angela Heck, Petra Hieber, Kim-Dung Huynh, Markus Klarhöfer, Roger Luechinger, Björn Rasch, Klaus Scheffler, Klara Spalek, Christoph Stippich, Christian Vogler, Vanja Vukojevic, Attila Stetak, and Andreas Papassotiropoulos
PKCα is genetically linked to memory capacity in healthy subjects and to risk for posttraumatic stress disorder in genocide survivors

PNAS 2012 ; published ahead of print May 14, 2012 | doi:10.1073/pnas.1200857109

Media contact
Prof. Dr. Andreas Papassotiropoulos, University of Basel, Division of Molecular Neuroscience, Tel: +41 61 267 0599 (direct), +41 61 267 0588 (secretary), E-mail: andreas.papas@unibas.ch

Prof. Dr. Dominique J.-F. de Quervain, University of Basel, Division of Cognitive Neuroscience, Tel:+41 61 267 0237 (direct), +41 61 267 02 38 (secretary), E-mail: dominique.dequervain@unibas.ch

Reto Caluori | idw
Further information:
http://www.unibas.ch
http://www.pnas.org/cgi/doi/10.1073/pnas.1200857109

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>