Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Down but not out – Inhibited Tyk2 retains anti-cancer activity

11.09.2015

Tyk2 is a key component of the immune system and has an important role in the defence against infections and cancer. Recent studies, however, have established that Tyk2 is strongly activated in certain types of cancer and that inhibition of its enzymatic activity stops cancer cell growth. A team from the Vetmeduni Vienna has now presented the first evidence that enzymatically inactive Tyk2 retains anti-cancer activity of immune cells in mice. Thus, Tyk2-inhibiting drugs do not impair the immune system’s fight against cancer. The results were published in the journal Oncoimmunology.

Tyrosine kinase 2 (Tyk2) is an enzyme involved in intracellular signalling and has an important role in activating the immune system. But enzymatically active Tyk2 can also promote excessive immune reactions and growth of certain cancer types.

Since several years, scientists are developing substances to specifically inhibit the kinase activity of Tyk2 for the treatment of inflammatory diseases and for potential use in cancer therapy. However, complications may occur: Tyk2 crucially contributes to the maturation and activation of natural killer (NK) cells.

NK cells form part of the innate immune system and are the first defence against virus infections and cancer. They recognise cancer cells and produce a series of proteins capable of destroying them. Inhibition of Tyk2 could therefore also weaken NK cells and block an important front of the body’s own defence against cancer.

First evidence of kinase-independent functions of Tyk2 in a living organism

A team of researchers led by Birgit Strobl, Mathias Müller and Veronika Sexl from the Institute of Animal Breeding and Genetics and the Institute of Pharmacology and Toxicology at the Vetmeduni Vienna investigated cancer growth in Tyk2 gene-targeted mice.

Tyk2-deficient mice were not able to control cancer growth. NK cells of these animals exhibited incomplete maturation and were unable to destroy cancer cells. Surprisingly, in mice whose Tyk2 was present but enzymatically inactivated, cancer growth was strongly suppressed and NK cells retained their ability to kill the cancer cells.

Project leader Birgit Strobl explains: “Until now, it was unknown that Tyk2 has effects within the whole organism that do not depend on its enzymatic activities. Without its kinase activity, it still drives NK cell maturation and boosts their activity. Here lies the key for cancer medicine. Drugs that inhibit the kinase activity of Tyk2 – and there are currently several of them in the testing phase – do not hamper the immune system in its work. These drugs are therefore even more promising for cancer therapy than previously thought.”

Research into proteins involved in the JAK/STAT signal pathway

The research forms part of a Special Research Programme (SFB) funded by FWF, the Austrian Science Fund. SFB F28 “Jak-Stat Signalling: From Basics to Disease” (http://www.jak-stat.at) involves a consortium of Viennese researchers with the participation of an international scientific network and aims to understand the function of JAKs (Janus kinases) and STATs (Signal Transducers and Activators of Transcription) in the context of inflammation, infection and cancer.

Service:
The article “In vivo tumor surveillance by NK cells requires TYK2 but not TYK2 kinase activity”, by
Michaela Prchal-Murphy, Agnieszka Witalisz-Siepracka, Karoline T. Bednarik, Eva Maria Putz, Dagmar Gotthardt, Katrin Meissl, Veronika Sexl, Mathias Müller and Birgit Strobl was published in the journal OncoImmunology. DOI:10.1080/2162402X.2015.1047579
http://www.tandfonline.com/doi/full/10.1080/2162402X.2015.1047579

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Mathias Müller
Institute of Animal Breeding and Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-5620
mathias.mueller@vetmeduni.ac.at

Released by:
Heike Hochhauser
Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1151
heike.hochhauser@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Heike Hochhauser | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>