Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double trouble

12.01.2009
Japanese researchers have identified two SNPs, which significantly increases susceptibility to the autoimmune diseases rheumatoid arthritis (RA) and systemic lupus erythmatosus (SLE).

Variations in a single gene simultaneously increase the risk of two autoimmune conditions

Japanese researchers have identified two single nucleotide polymorphisms (SNPs), each of which significantly increases susceptibility to the autoimmune diseases rheumatoid arthritis (RA) and systemic lupus erythmatosus (SLE). They occur in a gene for a protein that regulates immune system cells. While the SNPs have so far only been detected in East Asians, understanding their role in promoting the onset of both autoimmune diseases could lead to better treatments for all, the researchers say.

RA is a painful condition where the body’s immune system attacks and degrades joints. The disease affects up to one person in a hundred, and both genetic and environmental factors can increase susceptibility to it. Other researchers have uncovered several genes with variants that increase the risk of RA. Some, presumably for compounds involved in the autoimmune process at a generic level, simultaneously increase the risk of other autoimmune conditions, such as SLE.

The current study, recently published in Nature Genetics (1), was led by researchers from RIKEN’s Center for Genomic Medicine in Yokohama. It focuses on a region of the long arm of human chromosome 1 which contains genes of the signaling lymphocyte activation molecule (SLAM) family. Proteins of the SLAM family are involved in regulating cells of the immune system, so there is a potential link with autoimmune conditions. The chromosome region had already been linked with increased risk of RA and SLE in previous studies.

In two independent Japanese populations—one of 830 arthritis sufferers and 658 controls, the other of 1,112 arthritis sufferers and 940 controls—the researchers identified five SNPs closely associated with RA in the SLAM family gene, CD244. The researchers showed that these SNPs also increase susceptibility to SLE.

All the SNPs occurred in the gene’s introns—segments of the DNA sequence that are chopped out before the final protein is synthesized. It has recently been suggested that introns may well play a role in regulating gene activity. So the researchers assayed the SNPs for their impact on the rate of transcription of CD244, and determined that two of five led to significant increases in gene activity.

As CD244 is known to encode a protein which activates or inhibits the natural killer cells of the immune system, the researchers say they are not surprised that its SNPs are associated with susceptibility to autoimmune diseases. “But we don’t yet know the precise molecular mechanisms involved,” says project leader, Kazuhiko Yamamoto.

Reference

1. Suzuki, A., Yamada, R., Kochi, Y., Sawada, T., Okada, Y., Matsuda, K., Kamatani, Y., Mori, M., Shimane, K., Hirabayashi, Y., et al. Functional SNPs in CD244 increase the risk of rheumatoid arthritis in a Japanese population. Nature Genetics 40, 1224–1229 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Autoimmune Diseases

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/622/
http://www.researchsea.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>