Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double-teaming a whole-genome hunt

13.07.2010
Scientists combine new and classic approaches to discover rare disease gene

By inspecting the sequence of all 3 billion "letters" that make up the genome of a single person affected with a rare, inherited disorder, a Johns Hopkins and Duke University team ferreted out the single genetic mutation that accounts for the disease.

Reporting their results in the June 17 issue of PLoS Genetics, the team says an altered version of the gene PTPN11 is the cause of metachondromatosis, a disorder characterized by bony growths, often on the hands and feet.

The study, the scientists say, demonstrates that new, whole-genome sequencing technology can efficiently and accurately lead investigators to the identification genes that cause Mendelian diseases — those caused by mutations in a single gene and passed on according to classic genetic patterns.

The traditional way of collaring a Mendelian disease-causing gene entails time-consuming and labor-intensive genetic analyses of numerous related individuals across generations. Known as "linkage," this approach depends on collecting families, especially large families with multiple affected members. This can be difficult and time consuming and often does not have sufficient resolution to identify the responsible gene. In fact, the definitive catalog of genes and disorders maintained at Johns Hopkins, Online Mendelian Inheritance in Man (OMIM), lists more than 1,500 disorders for which linkage studies have identified a large genomic region but have failed to pinpoint the responsible gene.

The failures were often due to the absence of enough related and affected individuals to provide linkage evidence of sufficient strength and resolution to identify the genes responsible for rare inherited diseases. Another weakness of linkage studies is that an affected individual may be so mildly affected that they are erroneously classified as unaffected, thereby skewing study results.

Success for metachondromatosis came when researchers combined a linkage study of 11 family members (five affected with metachondromatosis and six unaffected) with the whole-genome sequencing of one affected member. The linkage study identified likely regions of the genome where the suspect mutation could be found, considerably reducing the fraction of the genome that could contain the disease. Focusing on these regions, the team identified a mutation in PTPN11 that was sure to cause loss of function of the gene product.

"This whole-genome study, which took only two months, got us to a place where otherwise we wouldn't have arrived very quickly, if ever," says David Valle, M.D., Henry J. Knott Professor and director of the Institute of Genetic Medicine, Johns Hopkins University School of Medicine. "It's a great example of the power of a broad, agnostic approach."

By comparing the one whole genome of the affected individual with eight non-affected control genomes as well as to a database of single-letter variations known to occur in more than one percent of the population, and to other sequencing data, the researchers came up with a list of 100 possible candidate genes. These were analyzed in light of the linkage evidence which, although modest, allowed the team to narrow its search for variants to just a fraction of the genome and narrowed the list to half a dozen genes. Then they combed the literature to understand what was known of the biological function of these candidates, looking for any that might be involved in bone development.

Nara Sobreira, a graduate student in human genetics at Johns Hopkins and a lead author of the study, found that lots had been published about one of the six genes, PTPN11. Mutations in this gene made it hyperactive, causing Noonan syndrome, a genetic disorder that prevents normal development in various parts of the body, including the skeleton.

This newly discovered mutation or altered version involved a so-called "deletion" in which a piece of the genetic code is missing and likely to cause a loss of function of the gene, disabling its ability to manufacture normal protein, Sobreira explains. She said that gave credibility to the possibility that PTPN11 was responsible for metachondromatosis, which gives rise to different physical characteristics.

To confirm their suspicions, the team first checked to see if all affected members of the family in the linkage studies had the mutation and if all unaffected members didn't. The answer was yes.

The next and final assurance needed to prove that this gene was responsible for metachondromatosis was to find the same mutation of the same gene in an affected person unrelated to the family originally studied. The Hopkins team located a second family already seeking treatment at the Greenburg Center for Skeletal Dysplasias and confirmed that mutations, causing a loss of function of the PTPN11 gene, caused metachondromatosis.

"This discovery has given us clues about the molecular basis of other genetic diseases for which a cause remains unknown and that are not benign like this one," Sobreira says.

Johns Hopkins authors on the paper, in addition to Sobreira and Valle, are Dimitrios Avramopoulos, Elizabeth Wohler, Gretchen L. Oswald, Eric L. Stevens, Jonathan Pevsner, George Thomas and Julie E. Hoover-Fong. Authors from Duke University are Elizabeth T. Cirulli, Dongliang Ge, Kevin V. Shianna, Jason P. Smith, Jessica M. Maia, Curtis E. Gumbs and David B. Goldstein.

On the Web:

Valle lab:
http://www.hopkinsmedicine.org/geneticmedicine/People/Faculty/valle.html
PLoS Genetics:
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000991

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>