Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double-teaming a whole-genome hunt

13.07.2010
Scientists combine new and classic approaches to discover rare disease gene

By inspecting the sequence of all 3 billion "letters" that make up the genome of a single person affected with a rare, inherited disorder, a Johns Hopkins and Duke University team ferreted out the single genetic mutation that accounts for the disease.

Reporting their results in the June 17 issue of PLoS Genetics, the team says an altered version of the gene PTPN11 is the cause of metachondromatosis, a disorder characterized by bony growths, often on the hands and feet.

The study, the scientists say, demonstrates that new, whole-genome sequencing technology can efficiently and accurately lead investigators to the identification genes that cause Mendelian diseases — those caused by mutations in a single gene and passed on according to classic genetic patterns.

The traditional way of collaring a Mendelian disease-causing gene entails time-consuming and labor-intensive genetic analyses of numerous related individuals across generations. Known as "linkage," this approach depends on collecting families, especially large families with multiple affected members. This can be difficult and time consuming and often does not have sufficient resolution to identify the responsible gene. In fact, the definitive catalog of genes and disorders maintained at Johns Hopkins, Online Mendelian Inheritance in Man (OMIM), lists more than 1,500 disorders for which linkage studies have identified a large genomic region but have failed to pinpoint the responsible gene.

The failures were often due to the absence of enough related and affected individuals to provide linkage evidence of sufficient strength and resolution to identify the genes responsible for rare inherited diseases. Another weakness of linkage studies is that an affected individual may be so mildly affected that they are erroneously classified as unaffected, thereby skewing study results.

Success for metachondromatosis came when researchers combined a linkage study of 11 family members (five affected with metachondromatosis and six unaffected) with the whole-genome sequencing of one affected member. The linkage study identified likely regions of the genome where the suspect mutation could be found, considerably reducing the fraction of the genome that could contain the disease. Focusing on these regions, the team identified a mutation in PTPN11 that was sure to cause loss of function of the gene product.

"This whole-genome study, which took only two months, got us to a place where otherwise we wouldn't have arrived very quickly, if ever," says David Valle, M.D., Henry J. Knott Professor and director of the Institute of Genetic Medicine, Johns Hopkins University School of Medicine. "It's a great example of the power of a broad, agnostic approach."

By comparing the one whole genome of the affected individual with eight non-affected control genomes as well as to a database of single-letter variations known to occur in more than one percent of the population, and to other sequencing data, the researchers came up with a list of 100 possible candidate genes. These were analyzed in light of the linkage evidence which, although modest, allowed the team to narrow its search for variants to just a fraction of the genome and narrowed the list to half a dozen genes. Then they combed the literature to understand what was known of the biological function of these candidates, looking for any that might be involved in bone development.

Nara Sobreira, a graduate student in human genetics at Johns Hopkins and a lead author of the study, found that lots had been published about one of the six genes, PTPN11. Mutations in this gene made it hyperactive, causing Noonan syndrome, a genetic disorder that prevents normal development in various parts of the body, including the skeleton.

This newly discovered mutation or altered version involved a so-called "deletion" in which a piece of the genetic code is missing and likely to cause a loss of function of the gene, disabling its ability to manufacture normal protein, Sobreira explains. She said that gave credibility to the possibility that PTPN11 was responsible for metachondromatosis, which gives rise to different physical characteristics.

To confirm their suspicions, the team first checked to see if all affected members of the family in the linkage studies had the mutation and if all unaffected members didn't. The answer was yes.

The next and final assurance needed to prove that this gene was responsible for metachondromatosis was to find the same mutation of the same gene in an affected person unrelated to the family originally studied. The Hopkins team located a second family already seeking treatment at the Greenburg Center for Skeletal Dysplasias and confirmed that mutations, causing a loss of function of the PTPN11 gene, caused metachondromatosis.

"This discovery has given us clues about the molecular basis of other genetic diseases for which a cause remains unknown and that are not benign like this one," Sobreira says.

Johns Hopkins authors on the paper, in addition to Sobreira and Valle, are Dimitrios Avramopoulos, Elizabeth Wohler, Gretchen L. Oswald, Eric L. Stevens, Jonathan Pevsner, George Thomas and Julie E. Hoover-Fong. Authors from Duke University are Elizabeth T. Cirulli, Dongliang Ge, Kevin V. Shianna, Jason P. Smith, Jessica M. Maia, Curtis E. Gumbs and David B. Goldstein.

On the Web:

Valle lab:
http://www.hopkinsmedicine.org/geneticmedicine/People/Faculty/valle.html
PLoS Genetics:
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000991

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>