Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double the pain: RUB biologists find the cause of pain in the treatment of fair skin cancer

20.06.2012
Pain caused by two different mechanisms

Apply the ointment, light on, light off – that’s how easy it is to cure various forms of non-melanoma skin cancer.


Cells that are incubated with aminolevulinic acid form protoporphyrin IX (PpIX), which appears red on the fluorescence micrograph. Both nerve cells (top row), and skin cancer cells (bottom row) form PpIX. The image on the left of both rows represents an overview, the images in the middle and on the right show enlarged sections of the images on the left. The power plants of the nerve and cancer cells, the mitochondria, are coloured green. The colour pattern of PpIX and the mitochondrial dye are similar. This suggests that PpIX accumulates in the mitochondria. Image: Ben Novak

However, the majority of patients suffer severe pain during the so-termed photodynamic therapy. Why the treatment with ointment and red light can be so painful has now been uncovered by researchers from the RUB.

They identified the ion channels involved and signalling molecules secreted by the cancer cells. “The results may provide a starting point for suppressing the pain”, says Dr. Ben Novak of the Department of Animal Physiology.

How the photodynamic therapy works

In contrast to normal cells, cancer cells are equipped with different enzymes and have a much higher metabolism. If you apply a molecule called aminolevulinic acid to the skin in the form of a gel, cancer cells take up considerably more of this substance than healthy cells. If aminolevulinic acid accumulates in the cells, the mitochondria – the power plants of the cells – form the molecule protoporphyrin IX. When irradiated with red light, protoporphyrin IX reacts with oxygen. This produces highly reactive oxygen species, free radicals, which destroy the cancer cells. Approximately ten minutes of red light irradiation is sufficient to successfully treat superficial forms of non-melanoma skin cancers such as actinic keratosis. Doctors also remove warts in this way.

Painful therapy

“The catch is: it’s terribly painful”, says Ben Novak. Forty percent of those treated experience pain during the light irradiation, which they assess on a scale of 0 to 10 (whereby 10 corresponds to an excruciating pain like a heart attack) as 7 to 8. Using injections, like at the dentist, it is possible to numb the nerves involved. “But that also always involves a risk”, says the Bochum biologist. The scientists led by the RUB professor Dr. Hermann Lübbert have now solved the mystery as to why the treatment hurts at all.

Pain-sensitive cells in the skin are stimulated

The pain is generated by two mechanisms. In a cell culture experiment, the team showed that not only cancer cells but also pain-sensitive nerve cells in the skin take up aminolevulinic acid – and its derivative methyl aminolevulinic acid – from the ointment. Using calcium imaging, the animal physiologists followed the activity of nerve cells which they had treated with aminolevulinic acid and cells that were not exposed to the substance. Treated nerve cells fired when the researchers exposed them to light. In a living organism, this would mean that the cells would send a pain stimulus to the brain. Without the aminolevulinic acid, the pain-sensitive cells remained inactive under red light. In further experiments, the scientists showed that the activity of the nerve cells is caused by sodium channels and voltage-gated calcium channels in the cell membrane. “A drug that targets these channels would, conceivably, be able to suppress the pain – but that’s still in the future”, says Ben Novak.

Tumour cells alert nerve cells

Lübbert’s team found that pain is generated in the nerve cells themselves, but also in another way. The affected tumour cells secrete a molecule – namely acetylcholine. “This is how they pass the message to other cells: something is wrong, my mitochondria are collapsing right now”, Novak illustrates. Acetylcholine acts as a neurotransmitter in the nervous system, where it is harmless. “Previous studies have shown though, that it is very painful when it is injected into the skin”. Some of the results have already been published. The researchers are currently preparing the data on the mechanisms of pain generation for publication. This attracted a great deal of interest at the 12th Congress of the European Society for Photodynamic Therapy in Dermatology (Euro-PDT) in Copenhagen in May 2012.

Bibliographic record

B. Novak, R. Schulten, H. Lübbert (2011): δ-Aminolevulinic acid and its methyl ester induce the formation of Protoporphyrin IX in cultured sensory neurons, Naunyn-Schmiedeberg's Archives of Pharmacology, doi: 10.1007/s00210-011-0683-1

Further information

Dr. Ben Novak, Department of Animal Physiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24331
Ben.Novak@rub.de

Prof. Dr. Hermann Lübbert Department of Animal Physiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24324
Hermann.Luebbert@rub.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>