Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double the pain: RUB biologists find the cause of pain in the treatment of fair skin cancer

20.06.2012
Pain caused by two different mechanisms

Apply the ointment, light on, light off – that’s how easy it is to cure various forms of non-melanoma skin cancer.


Cells that are incubated with aminolevulinic acid form protoporphyrin IX (PpIX), which appears red on the fluorescence micrograph. Both nerve cells (top row), and skin cancer cells (bottom row) form PpIX. The image on the left of both rows represents an overview, the images in the middle and on the right show enlarged sections of the images on the left. The power plants of the nerve and cancer cells, the mitochondria, are coloured green. The colour pattern of PpIX and the mitochondrial dye are similar. This suggests that PpIX accumulates in the mitochondria. Image: Ben Novak

However, the majority of patients suffer severe pain during the so-termed photodynamic therapy. Why the treatment with ointment and red light can be so painful has now been uncovered by researchers from the RUB.

They identified the ion channels involved and signalling molecules secreted by the cancer cells. “The results may provide a starting point for suppressing the pain”, says Dr. Ben Novak of the Department of Animal Physiology.

How the photodynamic therapy works

In contrast to normal cells, cancer cells are equipped with different enzymes and have a much higher metabolism. If you apply a molecule called aminolevulinic acid to the skin in the form of a gel, cancer cells take up considerably more of this substance than healthy cells. If aminolevulinic acid accumulates in the cells, the mitochondria – the power plants of the cells – form the molecule protoporphyrin IX. When irradiated with red light, protoporphyrin IX reacts with oxygen. This produces highly reactive oxygen species, free radicals, which destroy the cancer cells. Approximately ten minutes of red light irradiation is sufficient to successfully treat superficial forms of non-melanoma skin cancers such as actinic keratosis. Doctors also remove warts in this way.

Painful therapy

“The catch is: it’s terribly painful”, says Ben Novak. Forty percent of those treated experience pain during the light irradiation, which they assess on a scale of 0 to 10 (whereby 10 corresponds to an excruciating pain like a heart attack) as 7 to 8. Using injections, like at the dentist, it is possible to numb the nerves involved. “But that also always involves a risk”, says the Bochum biologist. The scientists led by the RUB professor Dr. Hermann Lübbert have now solved the mystery as to why the treatment hurts at all.

Pain-sensitive cells in the skin are stimulated

The pain is generated by two mechanisms. In a cell culture experiment, the team showed that not only cancer cells but also pain-sensitive nerve cells in the skin take up aminolevulinic acid – and its derivative methyl aminolevulinic acid – from the ointment. Using calcium imaging, the animal physiologists followed the activity of nerve cells which they had treated with aminolevulinic acid and cells that were not exposed to the substance. Treated nerve cells fired when the researchers exposed them to light. In a living organism, this would mean that the cells would send a pain stimulus to the brain. Without the aminolevulinic acid, the pain-sensitive cells remained inactive under red light. In further experiments, the scientists showed that the activity of the nerve cells is caused by sodium channels and voltage-gated calcium channels in the cell membrane. “A drug that targets these channels would, conceivably, be able to suppress the pain – but that’s still in the future”, says Ben Novak.

Tumour cells alert nerve cells

Lübbert’s team found that pain is generated in the nerve cells themselves, but also in another way. The affected tumour cells secrete a molecule – namely acetylcholine. “This is how they pass the message to other cells: something is wrong, my mitochondria are collapsing right now”, Novak illustrates. Acetylcholine acts as a neurotransmitter in the nervous system, where it is harmless. “Previous studies have shown though, that it is very painful when it is injected into the skin”. Some of the results have already been published. The researchers are currently preparing the data on the mechanisms of pain generation for publication. This attracted a great deal of interest at the 12th Congress of the European Society for Photodynamic Therapy in Dermatology (Euro-PDT) in Copenhagen in May 2012.

Bibliographic record

B. Novak, R. Schulten, H. Lübbert (2011): δ-Aminolevulinic acid and its methyl ester induce the formation of Protoporphyrin IX in cultured sensory neurons, Naunyn-Schmiedeberg's Archives of Pharmacology, doi: 10.1007/s00210-011-0683-1

Further information

Dr. Ben Novak, Department of Animal Physiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24331
Ben.Novak@rub.de

Prof. Dr. Hermann Lübbert Department of Animal Physiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24324
Hermann.Luebbert@rub.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>