Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double act: How a single molecule can attract and repel growing brain connections

11.08.2014

How can you find the same thing both attractive and repulsive? For growing neurons, the answer is in how they engage with it.

The findings, published online today in Neuron, stem from the 3D structure of Netrin-1 bound to one of the sensor molecules – receptors – the cell uses to detect it.


Depending on what receptors they have, axons (green) can be attracted (top) or repelled (bottom) by Netrin (grey). Credit:Dr. Lorenzo Finci (Harvard Medical School/Peking University) & Dr. Yan Zhang (Peking University).

The work, by scientists at the European Molecular Biology Laboratory (EMBL) in Hamburg, Germany, the Dana-Farber Cancer Institute affiliated to Harvard Medical School in Boston, the USA, and Peking University in Beijing, China, could also have implications for cancer treatment.

  “Although this is a challenging area for drug design, we found a mode of interaction that could be exploited to make cells respond to Netrin in a specific way, for instance to control proliferation or trigger programmed cell death,” says Rob Meijers, who led the work at EMBL.   Our brain’s ‘wiring’ is a set of protrusions that run from one neuron to another, like stretched-out arms.

As connections between neurons are established – in the developing brain and throughout life – each of these wires, or axons, grows out from a neuron and extends through the brain until it reaches its destination: the neuron it is connecting to. To choose its path, a growing axon senses and reacts to different molecules it encounters along the way.

One of these molecules, Netrin-1, posed an interesting puzzle: an axon can be both attracted to and repelled from this cue. The axon’s behaviour is determined by two types of receptor on its tip: DCC drives attraction, while UNC5 in combination with DCC drives repulsion.   When the scientists determined the 3D structure of Netrin-1 bound to DCC, they found the answer to this conundrum. The structure showed that Netrin-1 binds not to one, but to two DCC molecules.

But most surprisingly, it binds those two molecules in different ways.   “Normally a receptor and a signal are like lock-and-key, they have evolved to bind each other and are highly specific – and that’s what we see in one Netrin site,” says Meijers. “But the second is a very unusual binding site, which is not specific for DCC.”   Most of the second binding site does not connect directly to a receptor. Instead, it requires small molecules that act as middle-men.

These intermediary molecules seem to have a preference for UNC5, so if the axon has both UNC5 and DCC receptors, Netrin-1 will bind to one copy of UNC5 via those molecules and one copy of DCC at the DCC-specific site. This triggers a cascade of events inside the cell that ultimately drives the axon away from the source of Netrin-1, Yan Zhang’s lab at Peking University found.

The researchers surmise that, if an axon has only DCC receptors, each Netrin-1 molecule binds two DCC molecules, which results in the axon being attracted to Netrin-1.   “So by controlling whether or not UNC5 is present on its tip, an axon can switch from moving towards Netrin to moving away from it, weaving through the brain to establish the right connection,” says Jia-Huai Wang, who heads labs at Dana-Farber Cancer Institute and Peking University, and co-initiated the research.

Knowing how neurons switch from being attracted to Netrin to being repelled opens the door to devise ways of activating that switch in other cells that respond to Netrin cues, too. For instance, many cancer cells produce Netrin to attract growing blood vessels that bring them nourishment and allow the tumour to grow, so switching off that attraction could starve the tumour, or at least prevent it from growing.

On the other hand, when cancers metastasize they often stop being responsive to Netrin. In fact, the DCC receptor was first identified as a marker for an aggressive form of colon cancer, and DCC stands for ‘deleted in colorectal cancer’. Since colorectal cancer cells have no DCC, they are ‘immune’ to the programmed cell death that would normally follow once they move away from the lining of the gut and no longer have access to Netrin.

As a result, these tumour cells continue to move into the bloodstream, and metastasise to other tissues.   Meijers and colleagues are now investigating how other receptors bind to Netrin-1, and exactly how the intermediary molecules ‘choose’ their preferred receptor. The answers could one day enable researchers to steer a cell’s response to Netrin, ultimately changing its fate.

Published online in Neuron on 7 August 2014.DOI: http://dx.doi.org/10.1016/j.neuron.2014.07.010

For images and for more information please visit: http://www.embl.org/press/2014/140807_Hamburg

Policy regarding use EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Lena Raditsch Head of Communications European Molecular Biology Laboratory Meyerhofstraße 1 D-69117 Heidelberg Germany lena.raditsch@embl.de +49 62213878125 +4915114532784 www.embl.de

Lena Raditsch | EMBL Research News
Further information:
http://www.embl.de/aboutus/communication_outreach/media_relations/2014/140807_Hamburg/

Further reports about: Cancer EMBL Laboratory Molecular Netrin binds death receptor structure tumour

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>