Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double act: How a single molecule can attract and repel growing brain connections

11.08.2014

How can you find the same thing both attractive and repulsive? For growing neurons, the answer is in how they engage with it.

The findings, published online today in Neuron, stem from the 3D structure of Netrin-1 bound to one of the sensor molecules – receptors – the cell uses to detect it.


Depending on what receptors they have, axons (green) can be attracted (top) or repelled (bottom) by Netrin (grey). Credit:Dr. Lorenzo Finci (Harvard Medical School/Peking University) & Dr. Yan Zhang (Peking University).

The work, by scientists at the European Molecular Biology Laboratory (EMBL) in Hamburg, Germany, the Dana-Farber Cancer Institute affiliated to Harvard Medical School in Boston, the USA, and Peking University in Beijing, China, could also have implications for cancer treatment.

  “Although this is a challenging area for drug design, we found a mode of interaction that could be exploited to make cells respond to Netrin in a specific way, for instance to control proliferation or trigger programmed cell death,” says Rob Meijers, who led the work at EMBL.   Our brain’s ‘wiring’ is a set of protrusions that run from one neuron to another, like stretched-out arms.

As connections between neurons are established – in the developing brain and throughout life – each of these wires, or axons, grows out from a neuron and extends through the brain until it reaches its destination: the neuron it is connecting to. To choose its path, a growing axon senses and reacts to different molecules it encounters along the way.

One of these molecules, Netrin-1, posed an interesting puzzle: an axon can be both attracted to and repelled from this cue. The axon’s behaviour is determined by two types of receptor on its tip: DCC drives attraction, while UNC5 in combination with DCC drives repulsion.   When the scientists determined the 3D structure of Netrin-1 bound to DCC, they found the answer to this conundrum. The structure showed that Netrin-1 binds not to one, but to two DCC molecules.

But most surprisingly, it binds those two molecules in different ways.   “Normally a receptor and a signal are like lock-and-key, they have evolved to bind each other and are highly specific – and that’s what we see in one Netrin site,” says Meijers. “But the second is a very unusual binding site, which is not specific for DCC.”   Most of the second binding site does not connect directly to a receptor. Instead, it requires small molecules that act as middle-men.

These intermediary molecules seem to have a preference for UNC5, so if the axon has both UNC5 and DCC receptors, Netrin-1 will bind to one copy of UNC5 via those molecules and one copy of DCC at the DCC-specific site. This triggers a cascade of events inside the cell that ultimately drives the axon away from the source of Netrin-1, Yan Zhang’s lab at Peking University found.

The researchers surmise that, if an axon has only DCC receptors, each Netrin-1 molecule binds two DCC molecules, which results in the axon being attracted to Netrin-1.   “So by controlling whether or not UNC5 is present on its tip, an axon can switch from moving towards Netrin to moving away from it, weaving through the brain to establish the right connection,” says Jia-Huai Wang, who heads labs at Dana-Farber Cancer Institute and Peking University, and co-initiated the research.

Knowing how neurons switch from being attracted to Netrin to being repelled opens the door to devise ways of activating that switch in other cells that respond to Netrin cues, too. For instance, many cancer cells produce Netrin to attract growing blood vessels that bring them nourishment and allow the tumour to grow, so switching off that attraction could starve the tumour, or at least prevent it from growing.

On the other hand, when cancers metastasize they often stop being responsive to Netrin. In fact, the DCC receptor was first identified as a marker for an aggressive form of colon cancer, and DCC stands for ‘deleted in colorectal cancer’. Since colorectal cancer cells have no DCC, they are ‘immune’ to the programmed cell death that would normally follow once they move away from the lining of the gut and no longer have access to Netrin.

As a result, these tumour cells continue to move into the bloodstream, and metastasise to other tissues.   Meijers and colleagues are now investigating how other receptors bind to Netrin-1, and exactly how the intermediary molecules ‘choose’ their preferred receptor. The answers could one day enable researchers to steer a cell’s response to Netrin, ultimately changing its fate.

Published online in Neuron on 7 August 2014.DOI: http://dx.doi.org/10.1016/j.neuron.2014.07.010

For images and for more information please visit: http://www.embl.org/press/2014/140807_Hamburg

Policy regarding use EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Lena Raditsch Head of Communications European Molecular Biology Laboratory Meyerhofstraße 1 D-69117 Heidelberg Germany lena.raditsch@embl.de +49 62213878125 +4915114532784 www.embl.de

Lena Raditsch | EMBL Research News
Further information:
http://www.embl.de/aboutus/communication_outreach/media_relations/2014/140807_Hamburg/

Further reports about: Cancer EMBL Laboratory Molecular Netrin binds death receptor structure tumour

More articles from Life Sciences:

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

nachricht Sun protection for plants - Plant substances can protect plants against harmful UV radiation
22.08.2016 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

 
Latest News

New Ideas for the Shipping Industry

24.08.2016 | Event News

Lehigh engineer discovers a high-speed nano-avalanche

24.08.2016 | Physics and Astronomy

Streamlining accelerated computing for industry

24.08.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>