Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double act: How a single molecule can attract and repel growing brain connections

11.08.2014

How can you find the same thing both attractive and repulsive? For growing neurons, the answer is in how they engage with it.

The findings, published online today in Neuron, stem from the 3D structure of Netrin-1 bound to one of the sensor molecules – receptors – the cell uses to detect it.


Depending on what receptors they have, axons (green) can be attracted (top) or repelled (bottom) by Netrin (grey). Credit:Dr. Lorenzo Finci (Harvard Medical School/Peking University) & Dr. Yan Zhang (Peking University).

The work, by scientists at the European Molecular Biology Laboratory (EMBL) in Hamburg, Germany, the Dana-Farber Cancer Institute affiliated to Harvard Medical School in Boston, the USA, and Peking University in Beijing, China, could also have implications for cancer treatment.

  “Although this is a challenging area for drug design, we found a mode of interaction that could be exploited to make cells respond to Netrin in a specific way, for instance to control proliferation or trigger programmed cell death,” says Rob Meijers, who led the work at EMBL.   Our brain’s ‘wiring’ is a set of protrusions that run from one neuron to another, like stretched-out arms.

As connections between neurons are established – in the developing brain and throughout life – each of these wires, or axons, grows out from a neuron and extends through the brain until it reaches its destination: the neuron it is connecting to. To choose its path, a growing axon senses and reacts to different molecules it encounters along the way.

One of these molecules, Netrin-1, posed an interesting puzzle: an axon can be both attracted to and repelled from this cue. The axon’s behaviour is determined by two types of receptor on its tip: DCC drives attraction, while UNC5 in combination with DCC drives repulsion.   When the scientists determined the 3D structure of Netrin-1 bound to DCC, they found the answer to this conundrum. The structure showed that Netrin-1 binds not to one, but to two DCC molecules.

But most surprisingly, it binds those two molecules in different ways.   “Normally a receptor and a signal are like lock-and-key, they have evolved to bind each other and are highly specific – and that’s what we see in one Netrin site,” says Meijers. “But the second is a very unusual binding site, which is not specific for DCC.”   Most of the second binding site does not connect directly to a receptor. Instead, it requires small molecules that act as middle-men.

These intermediary molecules seem to have a preference for UNC5, so if the axon has both UNC5 and DCC receptors, Netrin-1 will bind to one copy of UNC5 via those molecules and one copy of DCC at the DCC-specific site. This triggers a cascade of events inside the cell that ultimately drives the axon away from the source of Netrin-1, Yan Zhang’s lab at Peking University found.

The researchers surmise that, if an axon has only DCC receptors, each Netrin-1 molecule binds two DCC molecules, which results in the axon being attracted to Netrin-1.   “So by controlling whether or not UNC5 is present on its tip, an axon can switch from moving towards Netrin to moving away from it, weaving through the brain to establish the right connection,” says Jia-Huai Wang, who heads labs at Dana-Farber Cancer Institute and Peking University, and co-initiated the research.

Knowing how neurons switch from being attracted to Netrin to being repelled opens the door to devise ways of activating that switch in other cells that respond to Netrin cues, too. For instance, many cancer cells produce Netrin to attract growing blood vessels that bring them nourishment and allow the tumour to grow, so switching off that attraction could starve the tumour, or at least prevent it from growing.

On the other hand, when cancers metastasize they often stop being responsive to Netrin. In fact, the DCC receptor was first identified as a marker for an aggressive form of colon cancer, and DCC stands for ‘deleted in colorectal cancer’. Since colorectal cancer cells have no DCC, they are ‘immune’ to the programmed cell death that would normally follow once they move away from the lining of the gut and no longer have access to Netrin.

As a result, these tumour cells continue to move into the bloodstream, and metastasise to other tissues.   Meijers and colleagues are now investigating how other receptors bind to Netrin-1, and exactly how the intermediary molecules ‘choose’ their preferred receptor. The answers could one day enable researchers to steer a cell’s response to Netrin, ultimately changing its fate.

Published online in Neuron on 7 August 2014.DOI: http://dx.doi.org/10.1016/j.neuron.2014.07.010

For images and for more information please visit: http://www.embl.org/press/2014/140807_Hamburg

Policy regarding use EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Lena Raditsch Head of Communications European Molecular Biology Laboratory Meyerhofstraße 1 D-69117 Heidelberg Germany lena.raditsch@embl.de +49 62213878125 +4915114532784 www.embl.de

Lena Raditsch | EMBL Research News
Further information:
http://www.embl.de/aboutus/communication_outreach/media_relations/2014/140807_Hamburg/

Further reports about: Cancer EMBL Laboratory Molecular Netrin binds death receptor structure tumour

More articles from Life Sciences:

nachricht Biology in a twist -- deciphering the origins of cell behavior
31.03.2015 | National University of Singapore

nachricht Speech dynamics are coded in the left motor cortex
31.03.2015 | Universitätsmedizin Göttingen - Georg-August-Universität

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Biology in a twist -- deciphering the origins of cell behavior

31.03.2015 | Life Sciences

Wrapping carbon nanotubes in polymers enhances their performance

31.03.2015 | Materials Sciences

Research Links Two Millennia of Cyclones, Floods, El Niño

31.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>