Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Between dormancy and self-renewal: Mainz mouse model shows blood stem cells in action

15.12.2008
Over a period of five years, scientists at the Johannes Gutenberg University Mainz have managed to create a genetically modified mouse in which the activity of the blood stem cells can be tracked.

"This mouse was created from a single embryonic stem cell. We are able to observe its blood stem cells in detail and see when they divide, i.e., become active, and when they are dormant," said Dr Ernesto Bockamp of the Institute for Toxicology.

Observations made by the work groups of Professor Andreas Trumpp and Dr Anne Wilson in Lausanne and Heidelberg have shown that the dormancy of certain blood stem cells can be reversed by, for example, toxic stress; they become active but return to their dormant status once their work has been completed. These findings are not only of importance for basic research, but also for applied cancer research. They were published in the latest edition of the leading scientific journal Cell.

The important task of blood stem cells is to create millions of new daughter cells in our bodies. There is also a special group of blood stem cells, however, which remains practically dormant in so-called bone marrow 'niches' in low oxygen environments. "These dormant blood stem cells divide only very rarely, which actually makes a lot of sense," explains Bockamp. "In their state of dormancy, these cells are extremely well protected against external influences such as toxic damage, but also against undesirable changes such as mutations." If the bone marrow is damaged or there is a sudden loss of many blood cells, the dormant blood stem cells are activated and turn into activated blood stem cells with the capacity for self-renewal and the production of millions of mature blood cells. Once the danger has passed and system equilibrium has been restored, these activated stem cells return to their niches and to a dormant state.

It was by creating the new mouse model that toxicologists from Mainz University established the prerequisites for obtaining these new insights. The mouse model created by Dr Leonid Eshkind made it possible to package the mouse's DNA in a luminescent green sheath. The green, fluorescent protein of a jellyfish was used to color the histones to which the DNA is attached, i.e., the normally non-luminescent packaging of the genes. "By adding a certain substance to the drinking water of the mouse, we are able to interrupt this highly specific labeling process and thus to stop the incorporation of green fluorescence into the blood stem cells," Eshkind reported. During the early 1980s, Dr Eshkind had been one of the first scientists worldwide to create genetically modified mice.

In the work now published in Cell, the Bockamp/Eshkind work group reported on the construction of a type of gene switch with which a specific characteristic - in this case fluorescence - can be switched on or off in a living mouse. "We can therefore externally control gene expression in stem cells," Bockamp added. "In the field of switchable, genetically-modified mouse models, we are among the leaders in Germany and want to use this extremely effective technology increasingly in future."

Control over the labeling process is indispensable - after all, the aim is to observe the behavior of the stem cells. Should the cells divide because they have been activated - perhaps by an injury - the fluorescence in the two daughter cells is reduced to 50 percent, then to 25 percent if they divide again, and so on. "In this way we can accurately determine how often the labeled stem cell has divided once the labeling process has been stopped," said Bockamp. His colleagues in Lausanne and Heidelberg found out that there is a small group of special blood stem cells that divide extremely rarely, i.e. only once every 145 days or five times during the life span of a mouse, and which can switch between dormancy and self-renewal in an emergency. Bockamp pointed out that the actual analysis of the cell division processes is not possible in Mainz, due to a lack of technical infrastructure. The group plans to focus increasingly on cancer research in its future work.

Original publication:
Anne Wilson, Elisa Laurenti, Gabriela Oser, Richard C. van der Wath, William Blanco-Bose, Maike Jaworski, Sandra Offner, Cyrille F. Dunant, Leonid Eshkind, Ernesto Bockamp, Pietro Lió, H. Robson MacDonald and Andreas Trumpp
Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair

Cell, 4 December 2008, doi:10.1016/j.cell.2008.10.048

Dr Ernesto Bockamp | alfa
Further information:
http://www.cell.com/abstract/S0092-8674(08)01386-X

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>