Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Between dormancy and self-renewal: Mainz mouse model shows blood stem cells in action

15.12.2008
Over a period of five years, scientists at the Johannes Gutenberg University Mainz have managed to create a genetically modified mouse in which the activity of the blood stem cells can be tracked.

"This mouse was created from a single embryonic stem cell. We are able to observe its blood stem cells in detail and see when they divide, i.e., become active, and when they are dormant," said Dr Ernesto Bockamp of the Institute for Toxicology.

Observations made by the work groups of Professor Andreas Trumpp and Dr Anne Wilson in Lausanne and Heidelberg have shown that the dormancy of certain blood stem cells can be reversed by, for example, toxic stress; they become active but return to their dormant status once their work has been completed. These findings are not only of importance for basic research, but also for applied cancer research. They were published in the latest edition of the leading scientific journal Cell.

The important task of blood stem cells is to create millions of new daughter cells in our bodies. There is also a special group of blood stem cells, however, which remains practically dormant in so-called bone marrow 'niches' in low oxygen environments. "These dormant blood stem cells divide only very rarely, which actually makes a lot of sense," explains Bockamp. "In their state of dormancy, these cells are extremely well protected against external influences such as toxic damage, but also against undesirable changes such as mutations." If the bone marrow is damaged or there is a sudden loss of many blood cells, the dormant blood stem cells are activated and turn into activated blood stem cells with the capacity for self-renewal and the production of millions of mature blood cells. Once the danger has passed and system equilibrium has been restored, these activated stem cells return to their niches and to a dormant state.

It was by creating the new mouse model that toxicologists from Mainz University established the prerequisites for obtaining these new insights. The mouse model created by Dr Leonid Eshkind made it possible to package the mouse's DNA in a luminescent green sheath. The green, fluorescent protein of a jellyfish was used to color the histones to which the DNA is attached, i.e., the normally non-luminescent packaging of the genes. "By adding a certain substance to the drinking water of the mouse, we are able to interrupt this highly specific labeling process and thus to stop the incorporation of green fluorescence into the blood stem cells," Eshkind reported. During the early 1980s, Dr Eshkind had been one of the first scientists worldwide to create genetically modified mice.

In the work now published in Cell, the Bockamp/Eshkind work group reported on the construction of a type of gene switch with which a specific characteristic - in this case fluorescence - can be switched on or off in a living mouse. "We can therefore externally control gene expression in stem cells," Bockamp added. "In the field of switchable, genetically-modified mouse models, we are among the leaders in Germany and want to use this extremely effective technology increasingly in future."

Control over the labeling process is indispensable - after all, the aim is to observe the behavior of the stem cells. Should the cells divide because they have been activated - perhaps by an injury - the fluorescence in the two daughter cells is reduced to 50 percent, then to 25 percent if they divide again, and so on. "In this way we can accurately determine how often the labeled stem cell has divided once the labeling process has been stopped," said Bockamp. His colleagues in Lausanne and Heidelberg found out that there is a small group of special blood stem cells that divide extremely rarely, i.e. only once every 145 days or five times during the life span of a mouse, and which can switch between dormancy and self-renewal in an emergency. Bockamp pointed out that the actual analysis of the cell division processes is not possible in Mainz, due to a lack of technical infrastructure. The group plans to focus increasingly on cancer research in its future work.

Original publication:
Anne Wilson, Elisa Laurenti, Gabriela Oser, Richard C. van der Wath, William Blanco-Bose, Maike Jaworski, Sandra Offner, Cyrille F. Dunant, Leonid Eshkind, Ernesto Bockamp, Pietro Lió, H. Robson MacDonald and Andreas Trumpp
Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair

Cell, 4 December 2008, doi:10.1016/j.cell.2008.10.048

Dr Ernesto Bockamp | alfa
Further information:
http://www.cell.com/abstract/S0092-8674(08)01386-X

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>