Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From the donor to the patient: Safe transport of implants under sterile conditions

04.08.2010
The biomedical laboratory unit of the Fraunhofer FEP is opening up new opportunities for evaluating the sterility and biofunctionalization of surfaces and medical products

Regardless of whether reading a book, enjoying nature, or driving on busy roads, the importance of one’s sight for one’s orientation and well-being is enormous.

Unfortunately, disease and infection can impair our sight and can even lead to blindness. The transplantation of a donor cornea can help in many cases.

In Germany some 6,000 cornea transplant operations are performed annually.
The demand for donor corneas is however about twice as high as the supply.
“Donor corneas can be stored for up to weeks prior to transplantation in special nutrient solutions. However, up to 25% of donor corneas are still lost during this process”, regrets Prof. Dr. Katrin Engelmann, scientific director of the Deutsche Gesellschaft für Gewebetransplantationen (DGFG). “The aim must be to improve the storage process for donor corneas, and in particular to improve the transport of the corneas from the tissue banks to the clinics.”

The Fraunhofer Institute for Electron Beam and Plasma Technology FEP, in collaboration with the Eye Clinic of the Klinikum Chemnitz gGmbH and TU Dresden, is developing methods to sterilize conventional contact lens containers and to design them such that donor corneas can be securely embedded. This will improve the conditions for transport to the clinics. Work is also been undertaken to optimize the solutions that are used for storing the donor corneas.

This is only one example of the tasks being worked on in the Fraunhofer FEP’s biomedical laboratory unit which was founded at the end of last year. A wide range of medical products and equipment are being tested for their compatibility with the human body and adapted as appropriate. Scientists are pursuing new methods for disinfecting and sterilizing products using low-energy electrons, a key issue when using advanced medical products. Medical technology is in the meantime providing patients with advanced treatment methods, which put new requirements on materials and processes. Here the Fraunhofer FEP can call upon its expertise in developing coatings and modifying surfaces. The biomedical laboratory unit, which was funded by the European Fund for Regional Development, is operated under the close scientific supervision of Prof. Dr. Richard Funk, Director of the Institute for Anatomy of TU Dresden.

Due to the changing age structure of the populace and an increase in the number of people suffering from chronic illnesses, innovative solutions in medical technology are becoming ever more important. This sector already represents an important commercial area in Germany. Chancellor Angela Merkel recently called this sector a “lighthouse shining in the darkness of the crisis” (VDI nachrichten, Berlin, 7 May 2010), because the German medical technology industry continues to grow despite the current economic crisis. This sector in Germany now employs about 100,000 people and in 2008 had a turnover of 18 billion euros (SPECTARIS e. V. Branchenbericht 2009).

Small and medium-sized companies in particular give the Saxon medical technology industry stability. These companies, however, only have limited own funds to invest in R&D. Close collaboration with universities, research institutes, and regional industry is hence vital from a scientific and economic point of view.

Dr. Christiane Wetzel, head of the biomedical laboratory unit at the Fraunhofer FEP, believes that the networking of technical colleges and industry is essential: “In the area of medical technology there must be a closed process chain. The surgeons who perform the operations and the engineers who develop new medical products must communicate effectively in order to end up with optimal solutions for the patients.” Fraunhofer FEP Director, Prof. Volker Kirchhoff, adds: “We invite companies, and in particular small and medium-sized medical technology firms in Saxony, to work with us to develop new solutions.”

Scientific contact:

Dr. Christiane Wetzel
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-165
christiane.wetzel@fep.fraunhofer.de
Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | idw
Further information:
http://www.fep.fraunhofer.de/enu/biomed

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>