Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Donor Cells for Immune Therapy

23.10.2008
In the future, bone marrow transfer to patients with leukaemia could be more secure. Experiments with mice have shown that certain cells of the immune system (regulatory T cells or Tregs) can suppress the dangerous side effects resulting from treatment.

Such cells control aggressive immune cells and, thus, unwanted immune reactions by the graft can be avoided. However, to date, there were no adequate techniques available to securely isolate the regulatory T cells.

Now, researchers of the Max Delbrück Center (MDC), Germany and their colleagues of the 'Fondazione Santa Lucia' in Rome, Italy have developed a simple method to specifically isolate these cells from human blood. (Blood)*.

According to the American Cancer Society, about 188,000 people world-wide developed leukaemia in 2007. Predominantly immature white blood cells can be found in their blood. These cells displace the healthy cells and, thus, suppress Blood a normal haematopoiesis. Chemotherapy destroys the diseased cells of the patient which then often have to be replaced by a bone marrow graft.

"However," says Dr. Markus Kleinewietfeld (MDC), "in 30 to 50 percent of the patients, the aggressive immune cells contaminating the bone marrow graft direct themselves against the recipient." This often lethal defence reaction is called 'Graft versus Host Disease' (GvHD). Yet, with the help of regulatory T cells from the blood of the donor, the rejection reaction might be suppressed.

"Until now, it was not possible to securely isolate regulatory T cells in their pure form," explains Dr. Kleinewietfeld. Since, in humans, the cell surface marker (CD25) used for the isolation before is also found on the aggressive immune cells, it was hardly possible to clearly separate the helpful Tregs from the dangerous cells.

With other markers (CD49d and CD127), the scientists now succeeded in separating the aggressive and dangerous immune cells from the helpful, regulatory cells. Thus, it is now possible to isolate regulatory T cells in high purity safely from human blood. Using these T cells, the researchers could already suppress a particular severe form of the 'Graft versus Host Disease' in mice. In a first clinical trial in Singapore, the MDC researchers now want to apply the regulatory cells in leukaemia patients who developed the severe immune reaction after a bone marrow donation.

"Singapore provides the infrastructure and financial commitment necessary for such trials," says Dr. Olaf Rötzschke, a former MDC researcher who now works at the 'Singapore Immunology Network' (SIgN) of the BIOPOLIS Campus. "Dependent on the outcome of this clinical test, regulatory T cells could possibly be used also for the treatment of autoimmune diseases, allergies and tissue rejections in the future," hopes Dr. Kirsten Falk, head of the MDC research group.

*Blood: doi 10 1182/blood-2008-04-150524

CD49d provides access to 'untouched' human Foxp3+ Treg free of contaminating effector cells

Markus Kleinewietfeld1, Mireille Starke1, Diletta Di Mitri2, Giovanna Borsellino2, Luca Battistini2, Olaf Rötzschke1,3, Kirsten Falk1

1Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
2Laboratory of Neuroimmunology, Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy

3Singapore Immunology Network (SIgN), 8A Biomedical Grove, IMMUNOS, Singapore 138648, Singapore

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10?13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/en/news

Further reports about: Isolate MDC Molecular Singapore T cells TREG blood cell blood flow immune cell marrow regulatory

More articles from Life Sciences:

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>