Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Don’t Compare Bananas to Pears

23.06.2010
Unique blue fluorescent chlorophyll decomposition products in banana leaves

Yellow leaves on banana plants give off a blue glow when viewed under UV light. This luminescence comes from decomposition products of chlorophyll, the substance that makes leaves green.

The decomposition products are appended with special sugar molecules in a unique fashion (hypermodified), and accumulate in ageing leaves, as Bernhard Kräutler and his team from the University of Innsbruck (Austria) report in the journal Angewandte Chemie. The researchers speculate that these long-lived chlorophyll decomposition products have physiological significance.

In other higher plants, such as apples and pears, mainly colorless, nonfluorescent chlorophyll decomposition products are found. Fluorescing decomposition products have been detected in ageing leaves before, but these have been short-lived intermediate products of chlorophyll degradation. Some time ago, Kräutler and his co-workers discovered that bananas give off a blue glow under UV light. As the bananas ripen, chlorophyll decomposition products that are colorless, but fluoresce blue, accumulate in the banana peel.

The compounds in the banana peels and leaves differ from each other, but they are both long-lived (persistent). In addition, the compounds have a structural similarity: a unique, complex ester function on a specific side chain. This group has a chemical stabilizing effect and explains the unusually long life of the fluorescing intermediates in the banana and its leaves. The leaf decomposition product, called Ma-FCC-61, is a pyrrole pigment with a previously unknown sugar unit attachment. The researchers do not rule out that this novel chlorophyll decomposition product could be a building block for previously undetected and even more complex pigments.

“When leaves of plants de-green and when fruits ripen, they develop fascinating colors,” says Kräutler. “Bright colors of fruit are believed to have evolved as valuable signals to attract frugivores, which are needed for seed dispersal. Indeed, the blue luminescence of ripe bananas may fulfill such a role,” according to Kräutler. The additional “advertisement” of fruit with colorful and possibly luminescent leaves could be a further optical signal from fruiting plants. “In any case, we need to reconsider the previous assumption that chlorophylls in ageing leaves are always disposed of by a general route leading to nonfluorescent decomposition products,” says Kräutler.

Author: Bernhard Kräutler, Universität Innsbruck (Austria), http://pc43-c726.uibk.ac.at/oci/people/en_bernhard_kraeutler.html

Title: Hypermodified Fluorescent Chlorophyll Catabolites: Source of Blue Luminescence in Senescent Leaves

Angewandte Chemie International Edition 2010, 49, No. 30, Permalink to the article: http://dx.doi.org/10.1002/anie.201000294

Bernhard Kräutler | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://pc43-c726.uibk.ac.at/oci/people/en_bernhard_kraeutler.html

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>