Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Don’t Compare Bananas to Pears

23.06.2010
Unique blue fluorescent chlorophyll decomposition products in banana leaves

Yellow leaves on banana plants give off a blue glow when viewed under UV light. This luminescence comes from decomposition products of chlorophyll, the substance that makes leaves green.

The decomposition products are appended with special sugar molecules in a unique fashion (hypermodified), and accumulate in ageing leaves, as Bernhard Kräutler and his team from the University of Innsbruck (Austria) report in the journal Angewandte Chemie. The researchers speculate that these long-lived chlorophyll decomposition products have physiological significance.

In other higher plants, such as apples and pears, mainly colorless, nonfluorescent chlorophyll decomposition products are found. Fluorescing decomposition products have been detected in ageing leaves before, but these have been short-lived intermediate products of chlorophyll degradation. Some time ago, Kräutler and his co-workers discovered that bananas give off a blue glow under UV light. As the bananas ripen, chlorophyll decomposition products that are colorless, but fluoresce blue, accumulate in the banana peel.

The compounds in the banana peels and leaves differ from each other, but they are both long-lived (persistent). In addition, the compounds have a structural similarity: a unique, complex ester function on a specific side chain. This group has a chemical stabilizing effect and explains the unusually long life of the fluorescing intermediates in the banana and its leaves. The leaf decomposition product, called Ma-FCC-61, is a pyrrole pigment with a previously unknown sugar unit attachment. The researchers do not rule out that this novel chlorophyll decomposition product could be a building block for previously undetected and even more complex pigments.

“When leaves of plants de-green and when fruits ripen, they develop fascinating colors,” says Kräutler. “Bright colors of fruit are believed to have evolved as valuable signals to attract frugivores, which are needed for seed dispersal. Indeed, the blue luminescence of ripe bananas may fulfill such a role,” according to Kräutler. The additional “advertisement” of fruit with colorful and possibly luminescent leaves could be a further optical signal from fruiting plants. “In any case, we need to reconsider the previous assumption that chlorophylls in ageing leaves are always disposed of by a general route leading to nonfluorescent decomposition products,” says Kräutler.

Author: Bernhard Kräutler, Universität Innsbruck (Austria), http://pc43-c726.uibk.ac.at/oci/people/en_bernhard_kraeutler.html

Title: Hypermodified Fluorescent Chlorophyll Catabolites: Source of Blue Luminescence in Senescent Leaves

Angewandte Chemie International Edition 2010, 49, No. 30, Permalink to the article: http://dx.doi.org/10.1002/anie.201000294

Bernhard Kräutler | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://pc43-c726.uibk.ac.at/oci/people/en_bernhard_kraeutler.html

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>