Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dolphins maintain round-the-clock visual vigilance

04.05.2009
Dolphins have a clever trick for overcoming sleep deprivation. Sam Ridgway from the US Navy Marine Mammal Program explains that they are able to send half of their brains to sleep while the other half remains conscious.

What is more, the mammals seem to be able to remain continually vigilant for sounds for days on end. All of this made Ridgway and his colleagues from San Diego and Tel Aviv wonder whether the dolphins' unrelenting auditory vigilance tired them and took a toll on the animals' other senses?

Ridgway and his team set about testing two dolphins' acoustic and visual vigilance over a 5 day period to find out how well they functioned after days without a break. The team publish their results on May 1 2009 in the Journal of Experimental Biology at http://jeb.biologists.org.

First Ridgway and his colleagues, Mandy Keogh, Mark Todd and Tricia Kamolnick, trained two dolphins to respond to a 1.5 s beep sounded randomly against a background of 0.5 s beeps every 30 s. Ridgway explains that the sounds were low enough for the dolphins to barely notice them as they swam through their enclosure, but the animals sprung into action every time they heard the 1.5 s tone, even after listening to the sounds for 5 days without a break. Their auditory vigilance remained as sharp as it had been 5 days earlier.

Next Allen Goldblatt and Don Carder designed a visual stimulus to test the dolphins' vigilance while they continued listening to the repetitive beeps. Knowing that the dolphins' binocular vision is limited because their eyes are situated on opposite sides of their heads, Kamolnick trained one of the dolphins, SAY, to recognise two shapes (either three horizontal red bars or one vertical green bar) with her right eye before training her to recognise the same shapes with the left eye, reasoning that if half of her brain was asleep during testing, the dolphin would only see the shapes through the eye connected to the conscious half of the brain. But the team were in for a surprise when they began training SAY's left eye. She already recognised the shapes, even though her left eye had not seen them previously. Ridgway explains that the information must be transferred between the two brain hemispheres and suspects that the dolphin's inter-hemispheric commissures, which connects the two halves, may transfer the visual information.

Having trained both dolphins to recognise the shapes, the hard part began: monitoring and rewarding the dolphins continually over a 5 day period while the team tested the animals' responses to both the sound and visual stimuli. Amazingly, even after 5 days of listening out for 1.5 s beeps amongst the 0.5 s beep background, the dolphins were still responding as accurately as they had done at the beginning of the experiment. The team also enticed the dolphins into a bay at night where they could be shown the horizontal and vertical bar shapes, and found that the dolphins were as sharp at the end of the 120 hour experiment as they had been at the beginning. And when the team checked the dolphins' blood for physical signs of sleep deprivation, they couldn't find any. After 5 days of unbroken vigilance the dolphins were in much better shape than the scientists.

REFERENCE: Ridgway, S., Keogh, M., Carder, D., Finneran, J., Kamolnick, T., Todd, M. and Goldblatt, A. (2009). Dolphins maintain cognitive performance during 72 to 120 hours of continuous auditory vigilance. J. Exp. Biol. 212, 1519-1527.

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>