Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dolphins use double sonar

08.06.2011
Dolphins and porpoises use echolocation for hunting and orientation. By sending out high-frequency sound, known as ultrasound, dolphins can use the echoes to determine what type of object the sound beam has hit. Researchers from Sweden and the US have now discovered that dolphins can generate two sound beam projections simultaneously.

“The beam projections have different frequencies and can be sent in different directions. The advantage is probably that the dolphin can locate the object more precisely”, says Josefin Starkhammar, a newly examined doctor in Electrical Measurements at Lund University, who also holds a Master’s degree in Engineering Physics.

The study, which was carried out together with scientists from San Diego, was published in the latest issue of the journal Biology Letters. The co-authors of the article were Patrick W. Moore, Lois Talmadge and Dorian S. Houser, who work at the National Marine Mammal Foundation in the USA.

“The findings add fuel to an already fierce debate in the research community on how the echolocation sound is produced”, says Josefin Starkhammar.

Dr Starkhammar’s own guess is that the two sound projections come from the two different sound-producing organs, the existence of which is well known, but it was believed that only one was active during echolocation. She stresses that more research is needed. For example, the two projections could also be explained by complicated reflections in the head of the dolphin, where the sound is formed.

“It is also somewhat remarkable that this has only been discovered now. Research has been carried out on dolphins and echolocation since the 1960s”, says Josefin Starkhammar.

One explanation as to why the discovery has taken so long is that this research requires recently developed and quite advanced measuring equipment and signal processing techniques. In addition, until now it has mostly been biologists who have conducted research on dolphins, and their expertise is often not in this specific area of technology. Furthermore, the research requires dolphins trained to answer scientific questions! The combination of marine biologists and engineers is ideal, in Josefin Starkhammar’s view.

To help her she has developed a device with 47 hydrophones (microphones for use in water).

“It is currently one of the best devices in the world for capturing dolphins’ ultrasound in water”, says Josefin Starkhammar, who has spent a lot of time testing and developing the equipment, including at Kolmården Wildlife Park, where one of her supervisors works. There she has also conducted other studies on dolphins and their echolocation.

Bats also use echolocation and there are a few species of shrew and some cave-dwelling birds which use a simpler form of the method. Even humans have developed devices that use echolocation and ultrasound technology.

“However, dolphins’ echolocation is in many ways much more sophisticated. Evolution has had the possibility to hone it over millions of years. Therefore, we humans have a lot to learn from dolphins. What is more, the knowledge could be important in finding ways to protect dolphins, for example from noise disturbance”, says Josefin Starkhammar.

For more information, please contact Josefin Starkhammar on josefin.starkhammar@elmat.lth.se or +46 706 171215.

Megan Grindlay | idw
Further information:
http://www.lunduniversity.lu.se/o.o.i.s?id=12683&postid=1897933
http://rsbl.royalsocietypublishing.org/content/early/2011/05/06/rsbl.2011.0396.full

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>