Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Doesn’t Kill the Brain Makes It Stronger

24.05.2011
Johns Hopkins team discovers brain defense in mice and a possible new strategy for treating neurologic disorders

Johns Hopkins scientists say that a newly discovered “survival protein” protects the brain against the effects of stroke in rodent brain tissue by interfering with a particular kind of cell death that’s also implicated in complications from diabetes and heart attack.

Reporting in the May 22 advance online edition of Nature Medicine, the Johns Hopkins team says it exploited the fact that when brain tissue is subjected to a stressful but not lethal insult a defense response occurs that protects cells from subsequent insult. The scientists dissected this preconditioning pathway to identify the most critical molecular players, of which a newly identified protein protector – called Iduna -- is one.

Named for a mythological Norwegian goddess who guards a tree full of golden apples used to restore health to sick and injured gods, the Iduna protein increased three- to four-fold in preconditioned mouse brain tissue, according to the scientists.

“Apparently, what doesn’t kill you makes you stronger,” says Valina Dawson, Ph.D., professor of neurology and neuroscience in the Johns Hopkins Institute of Cell Engineering. “This protective response was broad in its defense of neurons and glia and blood vessels – the entire brain. It’s not just a delay of death, but real protection that lasts for about 72 hours.”

The team noted that Iduna works by interrupting a cascade of molecular events that result in a common and widespread type of brain cell death called parthanatos often found in cases of stroke, Parkinson’s Disease, diabetes and heart attack. By binding with a molecule known as PAR polymer, Iduna prevents the movement of cell-death-inducing factor (AIF) into a cell’s nucleus.

In some of the experiments, Dawson and her team exposed mouse brain cells to short bursts of a toxic chemical, and then screened these “preconditioned” cells for genes that turned on as a result of the insult. Focusing on Iduna, the researchers turned up the gene’s activity in the cells during exposure to the toxic chemical that induced preconditioning. Cells deficient in Iduna did not survive, but those with more Iduna did.

In another series of experiments in live mice, the team injected a toxic chemical into the brains of a control group of normal mice and also into a group that had been genetically engineered to produce three to four times the normal amount of Iduna – as if they had been preconditioned. The engineered mice with more Iduna were much less susceptible to brain cell death: They had more functional tissue and markedly reduced stroke damage in their brains. In addition, the Iduna mice were less impaired in their ability to move around in their cages.

“Identifying protective molecules such as Iduna might someday lead to drugs that trigger the brain survival mechanism when people have a stroke or Parkinson’s disease,” says Ted Dawson, M.D., Ph.D., Leonard and Madlyn Abramson Professor in Neurodegenerative Diseases and scientific director of the Johns Hopkins Institute for Cell Engineering.

In research published April 5 in Science Signaling, the Dawsons’ laboratories previously revealed the mechanism that underpins AIF’s pivotal role in parthanatos.

By studying the 3-D structure of AIF, the team first identified the molecular pocket that looked like a potential PAR binding site. They then swapped that region out for a different one to see if it indeed took up PAR. Using HeLa cells in addition to mouse nerve and skin cells, the scientists noted that the AIF with the swapped region did not bind PAR and was not able to move into the nucleus.

The team genetically manipulated neurons so that they didn’t make any AIF, then in some cells added wild-type AIF, and in others added an AIF that did not bind PAR. When those cells were stressed using the “stroke in a dish” technique, the cells with normal AIF died while those with the AIF that could not bind PAR did not, revealing that PAR binding to AIF is required for parthanatos.

“These findings suggest that identifying chemicals that block PAR binding to AIF could be very protective,” says Ted Dawson. “On the other hand, identifying chemicals that mimic the effect of PAR polymer could be novel therapeutic agents that would kill cancers by causing cell death.”

Hopkins authors on the Iduna paper, in addition to Valina and Ted Dawson, are Shaida A. Andrabi, HoChul Kang, Yun-Il Lee, Jian Zhang, Zhikai Chi, Andrew B. West, Raymond C. Koehler and Guy G. Poirier. Other authors include Jean-Francios Haince of Centre Hospitalier Universitaire de Quebec.

Hopkins authors on the AIF paper, in addition to Valina and Ted Dawson, are Yingfei Wang, No Soo Kim, HoChul Kang, Karen K. David and Shaida A. Andrabi. Additional authors are Guy G. Poirier and Jean-Francois Haince of the Laval University Medical Research Center.

The Iduna work was supported by the National Institute of Neurological Disorders and Stroke (NINDS), the McKnight Endowment for the Neurosciences and the National Institute of Drug Abuse.

The AIF research was supported by the National Institute of Neurological Disorders and Stroke, American Heart Association and a Canadian Institutes Health Research grant.

On the Web:

Valina Dawson: http://neuroscience.jhu.edu/ValinaDawson.php
Ted Dawson: http://neuroscience.jhu.edu/TedDawson.php
Nature Medicine: http://www.nature.com/nm/index.html
Science Signaling: http://stke.sciencemag.org/

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>