Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA testing on 2,000-year-old bones in Italy reveal East Asian ancestry

02.02.2010
Researchers excavating an ancient Roman cemetery made a surprising discovery when they extracted ancient mitochondrial DNA (mtDNA) from one of the skeletons buried at the site: the 2,000-year-old bones revealed a maternal East Asian ancestry.

The results will be presented at the Roman Archeology Conference at Oxford, England, in March, and published in the Journal of Roman Archaeology.

According to Tracy Prowse, assistant professor of Anthropology, and the lead author on the study, the isotopic evidence indicates that about 20% of the sample analyzed to-date was not born in the area around Vagnari. The mtDNA is another line of evidence that indicates at least one individual was of East Asian descent.

"These preliminary isotopic and mtDNA data provide tantalizing evidence that some of the people who lived and died at Vagnari were foreigners, and that they may have come to Vagnari from beyond the borders of the Roman Empire," says Prowse. "This research addresses broader issues relating to globalization, human mobility, identity, and diversity in Roman Italy."

Based on her work in the region, she thinks the East Asian man, who lived sometime between the first to second centuries AD—the early Roman Empire—was a slave or worker on the site. His surviving grave goods consist of a single pot (which archaeologists used to date the burial). What's more, his burial was disturbed in antiquity and someone was buried on top of him.

Prowse's team cannot say how recently he, or his ancestors, left East Asia: he could have made the journey alone, or his East Asian genes might have come from a distant maternal ancestor. However, the oxygen isotope evidence indicates that he was definitely not born in Italy and likely came here from elsewhere in the Roman Empire.

During this era, Vagnari was an Imperial estate owned by the emperor in Rome and controlled by a local administrator. Workers were employed in industrial activities on the site, including iron smelting and tile production. These tiles were used for roofing buildings on the site and were also used as grave covers for the people buried in the cemetery. Fragmentary tiles found in and around Vagnari are marked "Gratus Caesaris", which translates into "slave of the emperor."

In addition to the mystery the find uncovers, Prowse sees the broader scientific impact for archaeologists, physical anthropologists, and classicists: The grave goods from this individual's burial gave no indication that he was foreign-born or of East Asian descent.

"This multi-faceted research demonstrates that human skeletal remains can provide another layer of evidence in conjunction with archaeological and historical information," says Prowse.

For the last seven years, Prowse has been digging the cemetery at the site of Vagnari, just west of the city of Bari in southern Italy. The cemetery was first discovered in 2002 by her colleague, Alastair Small (University of Edinburgh), who directs the excavations at Vagnari and continues to excavate other areas of the site. Prowse's research focuses on the bioarchaeological analysis of the people buried in the cemetery, including isotopic, palaeopathological, and aDNA analysis. The ancient DNA analyses were conducted by her coauthors on the paper, Jodi Barta and Tanya vonHunnius, at McMaster University.

The research was funded by the Social Sciences and Humanities Research Council of Canada.

McMaster University, one of four Canadian universities listed among the Top 100 universities in the world, is renowned for its innovation in both learning and discovery. It has a student population of 23,000, and more than 140,000 alumni in 128 countries.

Jane Christmas | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>