Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel DNA Sequencer for MDC’s Systems Biology Will Provide Deeper Insight into Gene Regulation

15.07.2011
The Berlin Institute for Medical Systems Biology (BIMSB) of the Max Delbrück Center (MDC), Germany, will be the first academic research institution in Continental Europe to acquire a novel DNA sequencer enabling the sequencing of single DNA molecules in real time.

The SMRT (single molecule, real-time) technology is also faster than current high-throughput technologies. The researchers of the BIMSB will use this third-generation sequencing technology, which was launched on the market in April 2011 by Pacific Biosciences, Menlo Park, California, USA, to gain deeper insight into gene regulation. The new sequencer, PacBio RS, will be installed in the BIMSB labs early in September.

To develop the “single molecule real-time” (SMRT) technology, Pacific Biosciences has combined nanotechnology, biochemistry, surface chemistry and optics. The new sequencer determines DNA sequences in real time by visualizing the reaction of a single enzyme with a single DNA molecule. The process does not require DNA amplification before the sequencing reaction and therefore avoids potential bias. The system is able to produce average DNA reads of greater than 1000 bases and accomplishes one experiment in one day instead of one week or longer. The PacBio RS perfectly complements the current scientific applications and capacities of next-generation sequencing technologies of the BIMSB Scientific Genomics Platform led by Wei Chen.

“The outstanding characteristic of SMRT technology is not only that you can watch how DNA is being synthesized, but also that it enables us to quantitatively determine gene regulation, RNA function, epigenetic gene regulation, DNA modification and genome structure. It allows us to look deeper into how genes and regulatory networks function and opens new approaches to personalized medicine,” said Walter Rosenthal, scientific director of the MDC, and Nikolaus Rajewsky, head of the Berlin Institute for Medical Systems Biology (BIMSB) of the MDC.

The BIMSB was launched by the MDC in 2008, supported by start-up funding from the Federal Ministry of Education and Research (BMBF) and the Senate of Berlin. Medical Systems Biology focuses on molecular networks of genes and proteins, their regulation and interaction with each other and their relevance in disease processes. BIMSB works closely with research institutions and networks in Berlin and beyond, in particular with Humboldt-Universität zu Berlin and Charité – Universitätsmedizin Berlin and also with New York University, USA.

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>