Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sequence variations linked to electrical signal conduction in the heart

15.11.2010
Findings pave way for better understanding of abnormal heart rhythms and sudden cardiac death

Scientists studying genetic data from nearly 50,000 people have uncovered several DNA sequence variations associated with the electrical impulses that make the heart beat. The findings, reported in Nature Genetics, may pave the way for a greater understanding of the mechanisms for abnormal heart rhythms and sudden cardiac death.

"Regulation of the heart's rhythm is exceedingly complex," says co-author Glenn I. Fishman, MD, the William Goldring Professor of Medicine and the director of the Leon H. Charney Division of Cardiology at NYU Langone Medical Center. "This study provides new clues about the biologic pathways that influence cardiac conduction. Our hope is that this information will translate into novel approaches to prevent or treat serious rhythm disorders, including sudden cardiac death."

Normally, signals start from specialized muscle cells called pacemaker cells, travel through the heart and cause rhythmical muscle contractions – a system called cardiac conduction. The signals register on heart monitors as the electrocardiogram, or ECG. Abnormalities in cardiac conduction, particularly in the ventricles of the heart, can be extremely dangerous, leading to sudden cardiac death which affects approximately 250,000 people each year in the United States. Treatment with a pacemaker or a specialized device known as an implantable defibrillator may be needed to regulate the heart's rhythm.

Researchers have known for some time that genetic factors contribute to electrical activity in the heart, including conduction of the electrical signal throughout the heart chambers. The new study reports on several previously unsuspected regions in the genome associated with cardiac electrical activity.

An international collaboration of scientists identified genetic associations with cardiac ventricular conduction in 22 regions of the genome in the largest study of its kind in conduction. The data was generated by an analysis of 15 European and American centers, representing nearly 50,000 individuals of European descent. Genome-wide association studies examine hundreds of thousands of genetic variants in thousands of people to try to find sequence variants and genes associated with particular diseases or conditions.

Some of these genetic variations were found in two sodium channel genes that sit side-by-side on the human genome. Sodium channels are molecular gated pores in living cells that control the flow of sodium ions – electrically charged particles – critical for the heart beat. The first gene, SCN5A, is well known to be involved in cardiac conduction. The second, SCN10A, has only recently been found in the heart.

As part of the study, Dr. Fishman and his team at NYU Langone identified where in the heart the SCN10A channels reside and discovered they were particularly abundant in specialized conduction fibers of the mouse heart key to the orderly contraction of the heart. The researchers then treated mice with a drug that selectively blocked this sodium channel and found that cardiac conduction was delayed, affecting the ECG. In addition to cardiac sodium channel genes, the study found that a number of other genes and genetic pathways involved in cardiac conduction, including calcium handling processes and transcription factors which influence cardiac development and formation. Dysfunctions in these processes before birth can lead to heart malformations in newborns.

Lead and corresponding author of the study is Dr. Nona Sotoodehnia from the University of Washington. Dr. Stefan Kaab of Ludwig-Maximilians-University in Munich, Germany, and Dr. Dan E. Arking at Johns Hopkins University in Baltimore are also corresponding authors. More than 100 scientists from the United Kingdom, Europe and the United States contributed to the work. The study was funded in part by the National Institutes of Health in Bethesda, Maryland.

ABOUT NYU LANGONE MEDICAL CENTER

NYU Langone Medical Center, a world-class patient-centered integrated academic medical center, is one of the nation's premier centers for excellence in health care, biomedical research, and medical education. Located in the heart of Manhattan, NYU Langone is comprised of three hospitals—Tisch Hospital, a 705-bed acute-care tertiary facility, Rusk Institute of Rehabilitation Medicine, the first rehabilitation hospital in the world, with 174 beds and extensive outpatient rehabilitation programs, and the 190-bed Hospital for Joint Diseases, one of only five hospitals in the world dedicated to orthopaedics and rheumatology—plus the NYU School of Medicine, one of the nation's preeminent academic institutions. For more information, visit http://www.med.nyu.edu/.

Dorie Klissas | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>