Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA sequence variations linked to electrical signal conduction in the heart

15.11.2010
Findings pave way for better understanding of abnormal heart rhythms and sudden cardiac death

Scientists studying genetic data from nearly 50,000 people have uncovered several DNA sequence variations associated with the electrical impulses that make the heart beat. The findings, reported in Nature Genetics, may pave the way for a greater understanding of the mechanisms for abnormal heart rhythms and sudden cardiac death.

"Regulation of the heart's rhythm is exceedingly complex," says co-author Glenn I. Fishman, MD, the William Goldring Professor of Medicine and the director of the Leon H. Charney Division of Cardiology at NYU Langone Medical Center. "This study provides new clues about the biologic pathways that influence cardiac conduction. Our hope is that this information will translate into novel approaches to prevent or treat serious rhythm disorders, including sudden cardiac death."

Normally, signals start from specialized muscle cells called pacemaker cells, travel through the heart and cause rhythmical muscle contractions – a system called cardiac conduction. The signals register on heart monitors as the electrocardiogram, or ECG. Abnormalities in cardiac conduction, particularly in the ventricles of the heart, can be extremely dangerous, leading to sudden cardiac death which affects approximately 250,000 people each year in the United States. Treatment with a pacemaker or a specialized device known as an implantable defibrillator may be needed to regulate the heart's rhythm.

Researchers have known for some time that genetic factors contribute to electrical activity in the heart, including conduction of the electrical signal throughout the heart chambers. The new study reports on several previously unsuspected regions in the genome associated with cardiac electrical activity.

An international collaboration of scientists identified genetic associations with cardiac ventricular conduction in 22 regions of the genome in the largest study of its kind in conduction. The data was generated by an analysis of 15 European and American centers, representing nearly 50,000 individuals of European descent. Genome-wide association studies examine hundreds of thousands of genetic variants in thousands of people to try to find sequence variants and genes associated with particular diseases or conditions.

Some of these genetic variations were found in two sodium channel genes that sit side-by-side on the human genome. Sodium channels are molecular gated pores in living cells that control the flow of sodium ions – electrically charged particles – critical for the heart beat. The first gene, SCN5A, is well known to be involved in cardiac conduction. The second, SCN10A, has only recently been found in the heart.

As part of the study, Dr. Fishman and his team at NYU Langone identified where in the heart the SCN10A channels reside and discovered they were particularly abundant in specialized conduction fibers of the mouse heart key to the orderly contraction of the heart. The researchers then treated mice with a drug that selectively blocked this sodium channel and found that cardiac conduction was delayed, affecting the ECG. In addition to cardiac sodium channel genes, the study found that a number of other genes and genetic pathways involved in cardiac conduction, including calcium handling processes and transcription factors which influence cardiac development and formation. Dysfunctions in these processes before birth can lead to heart malformations in newborns.

Lead and corresponding author of the study is Dr. Nona Sotoodehnia from the University of Washington. Dr. Stefan Kaab of Ludwig-Maximilians-University in Munich, Germany, and Dr. Dan E. Arking at Johns Hopkins University in Baltimore are also corresponding authors. More than 100 scientists from the United Kingdom, Europe and the United States contributed to the work. The study was funded in part by the National Institutes of Health in Bethesda, Maryland.

ABOUT NYU LANGONE MEDICAL CENTER

NYU Langone Medical Center, a world-class patient-centered integrated academic medical center, is one of the nation's premier centers for excellence in health care, biomedical research, and medical education. Located in the heart of Manhattan, NYU Langone is comprised of three hospitals—Tisch Hospital, a 705-bed acute-care tertiary facility, Rusk Institute of Rehabilitation Medicine, the first rehabilitation hospital in the world, with 174 beds and extensive outpatient rehabilitation programs, and the 190-bed Hospital for Joint Diseases, one of only five hospitals in the world dedicated to orthopaedics and rheumatology—plus the NYU School of Medicine, one of the nation's preeminent academic institutions. For more information, visit http://www.med.nyu.edu/.

Dorie Klissas | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>