Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA could reveal your surname

08.10.2008
Scientists at the world-leading Department of Genetics at the University of Leicester – where the revolutionary technique of genetic fingerprinting was invented by Professor Sir Alec Jeffreys- are developing techniques which may one day allow police to work out someone’s surname from the DNA alone.

Doctoral research by Turi King has shown that men with the same British surname are highly likely to be genetically linked. The results of her research have implications in the fields of forensics, genealogy, epidemiology and the history of surnames.

On Wednesday 8th October Dr King will present the key findings of her Ph.D. research in which she recruited over two and a half thousand men bearing over 500 different surnames to take part in the study. Carried out in Professor Mark Jobling’s lab, Dr Turi King’s research involved exploring this potential link between surname and Y chromosome type.

Dr King said: “In Britain, surnames are passed down from father to son. A piece of our DNA, the Y chromosome, is the one part of our genetic material that confers maleness and is passed, like surnames, from father to son. Therefore, a link could exist between a man’s surname and the type of Y chromosome he carries. A simple link between name and Y chromosome could in principle connect all men sharing a surname into one large family tree.

“However, in reality the link may not be so clear cut. Hereditary surnames in Britain are many hundreds of years old and each name may have had several founders. Events such as adoptions, name-changes and non-paternities would confuse any simple genetic link.

“These days, using genetic techniques, it is possible to tell Y chromosomes apart from one another so we wondered if you might find that a particular surname was associated with a particular Y chromosome type.”

Dr King said there were a number of factors which could break the link between surnames and Y chromosome type: for example, there could have been more than one person, known as a surname founder, who took on a surname at the time of surname formation around 700 years ago.

She said: “The surname Smith is a good example of this as it derives from the occupation of blacksmith so many men could have taken on the surname Smith. This means that instead of just one type of Y chromosome being associated with a surname, many different types of Y chromosomes would be associated with this single surname. On the other hand, for rarer names, there may have been just one founder for the name and potentially all men who bear that surname today would be descended from him and could be connected into one large family tree.”

“The link between surname and Y chromosome type could also be broken through events such as adoption or illegitimacy: in this instance, a male child would have one man’s surname but another man’s Y chromosome type. Given all this, we really didn’t know if a link would exist.”

Dr King’s research showed that between two men who share the same surname there is a 24% chance of sharing a common ancestor through that name but that this increases to nearly 50% if the surname they have is rare.

She said: The fact that such a strong link exists between surname and Y chromosome type has a potential use in forensic science, since it suggests that, given large databases of names and Y chromosome profiles, surname prediction from DNA alone may be feasible.

Dr King then went on to look at 40 surnames in depth by recruiting many different men all bearing the same surname, making sure that she excluded known relatives. Surnames such as Attenborough and Swindlehurst showed that over 70% of the men shared the same or near identical Y chromosome types whereas surnames such as Revis, Wadsworth and Jefferson show more than one group of men sharing common ancestry but unrelated to other groups.

These results have a potential use in forensic science, since it suggests that, given large databases of names and Y chromosome profiles, surname prediction from DNA alone may be feasible.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk
http://www.le.ac.uk/users/tek2/tek2.html

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>