Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA could reveal your surname

08.10.2008
Scientists at the world-leading Department of Genetics at the University of Leicester – where the revolutionary technique of genetic fingerprinting was invented by Professor Sir Alec Jeffreys- are developing techniques which may one day allow police to work out someone’s surname from the DNA alone.

Doctoral research by Turi King has shown that men with the same British surname are highly likely to be genetically linked. The results of her research have implications in the fields of forensics, genealogy, epidemiology and the history of surnames.

On Wednesday 8th October Dr King will present the key findings of her Ph.D. research in which she recruited over two and a half thousand men bearing over 500 different surnames to take part in the study. Carried out in Professor Mark Jobling’s lab, Dr Turi King’s research involved exploring this potential link between surname and Y chromosome type.

Dr King said: “In Britain, surnames are passed down from father to son. A piece of our DNA, the Y chromosome, is the one part of our genetic material that confers maleness and is passed, like surnames, from father to son. Therefore, a link could exist between a man’s surname and the type of Y chromosome he carries. A simple link between name and Y chromosome could in principle connect all men sharing a surname into one large family tree.

“However, in reality the link may not be so clear cut. Hereditary surnames in Britain are many hundreds of years old and each name may have had several founders. Events such as adoptions, name-changes and non-paternities would confuse any simple genetic link.

“These days, using genetic techniques, it is possible to tell Y chromosomes apart from one another so we wondered if you might find that a particular surname was associated with a particular Y chromosome type.”

Dr King said there were a number of factors which could break the link between surnames and Y chromosome type: for example, there could have been more than one person, known as a surname founder, who took on a surname at the time of surname formation around 700 years ago.

She said: “The surname Smith is a good example of this as it derives from the occupation of blacksmith so many men could have taken on the surname Smith. This means that instead of just one type of Y chromosome being associated with a surname, many different types of Y chromosomes would be associated with this single surname. On the other hand, for rarer names, there may have been just one founder for the name and potentially all men who bear that surname today would be descended from him and could be connected into one large family tree.”

“The link between surname and Y chromosome type could also be broken through events such as adoption or illegitimacy: in this instance, a male child would have one man’s surname but another man’s Y chromosome type. Given all this, we really didn’t know if a link would exist.”

Dr King’s research showed that between two men who share the same surname there is a 24% chance of sharing a common ancestor through that name but that this increases to nearly 50% if the surname they have is rare.

She said: The fact that such a strong link exists between surname and Y chromosome type has a potential use in forensic science, since it suggests that, given large databases of names and Y chromosome profiles, surname prediction from DNA alone may be feasible.

Dr King then went on to look at 40 surnames in depth by recruiting many different men all bearing the same surname, making sure that she excluded known relatives. Surnames such as Attenborough and Swindlehurst showed that over 70% of the men shared the same or near identical Y chromosome types whereas surnames such as Revis, Wadsworth and Jefferson show more than one group of men sharing common ancestry but unrelated to other groups.

These results have a potential use in forensic science, since it suggests that, given large databases of names and Y chromosome profiles, surname prediction from DNA alone may be feasible.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk
http://www.le.ac.uk/users/tek2/tek2.html

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>