Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA Replication – Take a break

07.10.2016

Before a cell divides, it must first handle a large-scale project: Its entire genetic material has to be duplicated so that each of the two daughter cells is equipped with a full copy after cell division. As errors in this DNA replication could lead to the death of the cell, the process is rigorously controlled. It takes place in two phases. Researchers at the Max Planck Institute of Biochemistry in Martinsried have now revealed in the journal Cell Reports that these two phases are strictly separated from one another by breaks, thereby preventing errors in the DNA replication.

large-scale projects are frequently susceptible to errors and these are generally very cost-intensive. A cell’s most important large-scale project is the replication of its DNA, i.e. the complete duplication of its genetic material. Here, errors such as the inadvertent multiplication of a DNA sequence can change the structure of the chromosomes.


Sld2 divides two phases (licensing and firing) of DNA-Replication from one another and is thereby a crucial control factor. Sld2 needs to be switched off by the enzymes Dma1 and Dma2 until the cell starts a new DNA-duplication. The DNA is more vulnerable for errors if this break is missing.

This can lead to cell death or, in the case of multi-cellular organisms such as humans, to the development of cancer. For this highly important project, the cell increases its success rate by dividing the process of DNA replication into a planning phase, known as the “licensing” phase, and an implementation phase, known as the “firing” phase.

The two phases follow in sequence. Boris Pfander, head of the “DNA Replication and Genome Integrity” research group, and his team have demonstrated that the baker’s yeast S. cerevisiae separates the timing of these phases from one another and that the Sld2 protein plays an important role in this regulation.

“A crucial factor in the success of the DNA duplication project is, on the one hand, that project planning is completed before the building work begins, but also that no new plans are made while the actual building work is being carried out,” Pfander explains.

The Martinsried-based team has shown that the cell, at the transition between the implementation phase and the next planning phase, first switches off all building machines (firing factors) – first and foremost, the Sld2 building machine. The correct time for switching off Sld2 is determined by four different kinase enzymes called CDK, DDK, Mck1 and Cdc5, which mark Sld2 with phosphate molecules. When all four enzymes have phosphorylated Sld2, the enzymes Dma1 and Dma2 become active and ultimately switch off Sld2.

If Sld2 is not switched off on time, the cell loses some of its valuable break time. In these circumstances, the DNA can still reliably duplicate, but it is vulnerable to the occurrence of sporadic errors. This means that it is not only important that cells take breaks, but that the length of these breaks is sufficient. “We now want to look for similar important breaks in other multi-cellular organisms,” says Pfander. “The division of the firing and licensing phase helps to counteract genomic defects. We can imagine that cancer cells do not take sufficient breaks, and that our research will help gain a better understanding of the development of cancer.”

Original publication:
K.-U. Reusswig, F. Zimmermann, L. Galanti and B. Pfander: Robust replication control is generated by temporal gaps between licensing and firing phases and depends on degradation of firing factor Sld2. Cell Reports, October 2016
DOI: 10.1016/j.celrep.2016.09.013

Contact:
Dr. Boris Pfander
DNA Replication and Genome Integrity
Max-Planck-Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: bpfander@biochem.mpg.de
www.biochem.mpg.de/pfander

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

www.biochem.mpg.de 

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press releases of the MPI of Biochemistry
http://www.biochem.mpg.de/pfander - Website of the Research Group "DNA Replication and Genome Integrity" (Boris Pfander)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie
Further information:
http://www.biochem.mpg.de/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>