Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA Replication – Take a break

07.10.2016

Before a cell divides, it must first handle a large-scale project: Its entire genetic material has to be duplicated so that each of the two daughter cells is equipped with a full copy after cell division. As errors in this DNA replication could lead to the death of the cell, the process is rigorously controlled. It takes place in two phases. Researchers at the Max Planck Institute of Biochemistry in Martinsried have now revealed in the journal Cell Reports that these two phases are strictly separated from one another by breaks, thereby preventing errors in the DNA replication.

large-scale projects are frequently susceptible to errors and these are generally very cost-intensive. A cell’s most important large-scale project is the replication of its DNA, i.e. the complete duplication of its genetic material. Here, errors such as the inadvertent multiplication of a DNA sequence can change the structure of the chromosomes.


Sld2 divides two phases (licensing and firing) of DNA-Replication from one another and is thereby a crucial control factor. Sld2 needs to be switched off by the enzymes Dma1 and Dma2 until the cell starts a new DNA-duplication. The DNA is more vulnerable for errors if this break is missing.

This can lead to cell death or, in the case of multi-cellular organisms such as humans, to the development of cancer. For this highly important project, the cell increases its success rate by dividing the process of DNA replication into a planning phase, known as the “licensing” phase, and an implementation phase, known as the “firing” phase.

The two phases follow in sequence. Boris Pfander, head of the “DNA Replication and Genome Integrity” research group, and his team have demonstrated that the baker’s yeast S. cerevisiae separates the timing of these phases from one another and that the Sld2 protein plays an important role in this regulation.

“A crucial factor in the success of the DNA duplication project is, on the one hand, that project planning is completed before the building work begins, but also that no new plans are made while the actual building work is being carried out,” Pfander explains.

The Martinsried-based team has shown that the cell, at the transition between the implementation phase and the next planning phase, first switches off all building machines (firing factors) – first and foremost, the Sld2 building machine. The correct time for switching off Sld2 is determined by four different kinase enzymes called CDK, DDK, Mck1 and Cdc5, which mark Sld2 with phosphate molecules. When all four enzymes have phosphorylated Sld2, the enzymes Dma1 and Dma2 become active and ultimately switch off Sld2.

If Sld2 is not switched off on time, the cell loses some of its valuable break time. In these circumstances, the DNA can still reliably duplicate, but it is vulnerable to the occurrence of sporadic errors. This means that it is not only important that cells take breaks, but that the length of these breaks is sufficient. “We now want to look for similar important breaks in other multi-cellular organisms,” says Pfander. “The division of the firing and licensing phase helps to counteract genomic defects. We can imagine that cancer cells do not take sufficient breaks, and that our research will help gain a better understanding of the development of cancer.”

Original publication:
K.-U. Reusswig, F. Zimmermann, L. Galanti and B. Pfander: Robust replication control is generated by temporal gaps between licensing and firing phases and depends on degradation of firing factor Sld2. Cell Reports, October 2016
DOI: 10.1016/j.celrep.2016.09.013

Contact:
Dr. Boris Pfander
DNA Replication and Genome Integrity
Max-Planck-Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: bpfander@biochem.mpg.de
www.biochem.mpg.de/pfander

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de

www.biochem.mpg.de 

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press releases of the MPI of Biochemistry
http://www.biochem.mpg.de/pfander - Website of the Research Group "DNA Replication and Genome Integrity" (Boris Pfander)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie
Further information:
http://www.biochem.mpg.de/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>