Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA repair protein caught in act of molecular theft

11.11.2010
Scientists have observed, for the first time, an intermediate stage in the chemical process that repairs DNA methylation damage and regulates many important biological functions that impact health conditions such as obesity, cancer and diabetes.

The observations focused on the bacterial DNA repair protein AlkB, but the results also apply to several proteins in the same family that play key regulatory roles in humans. Armed with these results, researchers may one day develop methods for blocking the protein's efforts to perform the biologically important demethylation function in human cells, said Chuan He, Professor in Chemistry at the University of Chicago.

"This family of proteins is the most exciting protein family now in biology," said He, who led the study. "These proteins directly impact obesity, cancer and diabetes, and they do not go through the traditional pathways of DNA or protein modification. Most likely they go through RNA modification and demodification. It's a new area of biological research."

He and his colleagues at UChicago and the University of Wisconsin-Madison report their findings in the journal Nature, published online on Nov. 10.

The Nature article presents new details about how proteins chemically alter biological molecules and their functioning via a process called oxidative demethylation. Methylation is a chemical process that helps control how DNA and other proteins carry out their functions in the body. In the case of DNA, methylation and demethylation affect how the genetic code gets made into proteins. In recent years scientists had assumed that AlkB and related proteins initiate an oxidizing reaction to remove a hydrocarbon group (the methyls) from the group's host molecule.

"Biological methylation is one of the most important processes in nature to regulate all kinds of things," He said, including how cells differentiate into their final state and how genetic information is transmitted to proteins.

The UChicago researchers recently invented a chemical technique to trap the AlkB protein when it reacts with its host molecule — a previously unobserved, ephemeral process. The technique tethers the protein to the host molecule. "It's stuck there. It can react and stop at the intermediate stage," He said.

Bizarre Observation

Two of the enzymatic intermediates that He's team trapped and observed were predicted and expected based on the chemical principles involved, but these fleeting species were directly observed for the first time. For a third intermediate, however, "we observed something bizarre," He said.

Researchers at UW-Madison then carried out computational calculations on the electronic and structural properties of the intermediates that He observed in his experiments. The calculations showed that the bizarrely behaving intermediate was "zwitterionic," meaning that it carried an overall neutral charge, but displayed positive or negative charges when interacting with different atoms.

"We were able to show that the intermediate captured by Chuan's beautiful experiment is zwitterionic in nature, which offers new clues regarding the chemical steps of the biological demethylation process," said Qiang Cui, professor of chemistry at UW-Madison.

The team documented the role of oxidation in demethylation using the U.S. Department of Energy's Advanced Photon Source at Argonne National Laboratory. The APS produces the brightest X-rays in the Western Hemisphere, which permitted the team to determine the crystal structures that show the three-dimensional atomic framework of the intermediate stage in the demethylation process.

Members of He's research team visit the APS two or three times a month for a full day of experimentation. "We literally collected close to a hundred data sets there," He said. The researchers take multiple data sets at different intervals to confirm the accuracy of their results.

The National Institutes of Health supported this study.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>