Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA repair protein caught in act of molecular theft

11.11.2010
Scientists have observed, for the first time, an intermediate stage in the chemical process that repairs DNA methylation damage and regulates many important biological functions that impact health conditions such as obesity, cancer and diabetes.

The observations focused on the bacterial DNA repair protein AlkB, but the results also apply to several proteins in the same family that play key regulatory roles in humans. Armed with these results, researchers may one day develop methods for blocking the protein's efforts to perform the biologically important demethylation function in human cells, said Chuan He, Professor in Chemistry at the University of Chicago.

"This family of proteins is the most exciting protein family now in biology," said He, who led the study. "These proteins directly impact obesity, cancer and diabetes, and they do not go through the traditional pathways of DNA or protein modification. Most likely they go through RNA modification and demodification. It's a new area of biological research."

He and his colleagues at UChicago and the University of Wisconsin-Madison report their findings in the journal Nature, published online on Nov. 10.

The Nature article presents new details about how proteins chemically alter biological molecules and their functioning via a process called oxidative demethylation. Methylation is a chemical process that helps control how DNA and other proteins carry out their functions in the body. In the case of DNA, methylation and demethylation affect how the genetic code gets made into proteins. In recent years scientists had assumed that AlkB and related proteins initiate an oxidizing reaction to remove a hydrocarbon group (the methyls) from the group's host molecule.

"Biological methylation is one of the most important processes in nature to regulate all kinds of things," He said, including how cells differentiate into their final state and how genetic information is transmitted to proteins.

The UChicago researchers recently invented a chemical technique to trap the AlkB protein when it reacts with its host molecule — a previously unobserved, ephemeral process. The technique tethers the protein to the host molecule. "It's stuck there. It can react and stop at the intermediate stage," He said.

Bizarre Observation

Two of the enzymatic intermediates that He's team trapped and observed were predicted and expected based on the chemical principles involved, but these fleeting species were directly observed for the first time. For a third intermediate, however, "we observed something bizarre," He said.

Researchers at UW-Madison then carried out computational calculations on the electronic and structural properties of the intermediates that He observed in his experiments. The calculations showed that the bizarrely behaving intermediate was "zwitterionic," meaning that it carried an overall neutral charge, but displayed positive or negative charges when interacting with different atoms.

"We were able to show that the intermediate captured by Chuan's beautiful experiment is zwitterionic in nature, which offers new clues regarding the chemical steps of the biological demethylation process," said Qiang Cui, professor of chemistry at UW-Madison.

The team documented the role of oxidation in demethylation using the U.S. Department of Energy's Advanced Photon Source at Argonne National Laboratory. The APS produces the brightest X-rays in the Western Hemisphere, which permitted the team to determine the crystal structures that show the three-dimensional atomic framework of the intermediate stage in the demethylation process.

Members of He's research team visit the APS two or three times a month for a full day of experimentation. "We literally collected close to a hundred data sets there," He said. The researchers take multiple data sets at different intervals to confirm the accuracy of their results.

The National Institutes of Health supported this study.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>