Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How DNA Repair Helps Prevent Cancer

19.08.2013
Researchers at Michigan State University use TACC supercomputers to understand DNA bending and repair mechanisms

The biological information that makes us unique is encoded in our DNA. DNA damage is a natural biological occurrence that happens every time cells divide and multiply. External factors such as overexposure to sunlight can also damage DNA.


Results from computer simulations show that it is energetically less expensive to bend mismatch-containing, defective DNA (G:T, C:C, C:T, G:A, G:G, T:T, A:A, A+:C) vs. non-defective DNA (containing A:T or G:C base pairs). DNA repair mechanisms likely take advantage of this feature to detect defective DNA based on an increased bending propensity.

Understanding how the human body recognizes damaged DNA and initiates repair fascinates Michael Feig, professor of biochemistry and molecular biology at Michigan State University. Feig studies the proteins MutS and MSH2-MSH6, which recognize defective DNA and initiate DNA repair. Natural DNA repair occurs when proteins like MutS (the primary protein responsible for recognizing a variety of DNA mismatches) scan the DNA, identify a defect, and recruit other enzymes to carry out the actual repair.

"The key here is to understand how these defects are recognized," Feig explained. "DNA damage occurs frequently and if you couldn't repair your DNA, then you won't live for very long." This is because damaged DNA, if left unrepaired, can compromise cells and lead to diseases such as cancer.

Feig, who has used national supercomputing resources since he was a graduate student in 1998, applied large-scale computer simulations to gain a detailed understanding of the cellular recognition process. Numerical simulations provide a very detailed view down to the atomistic level of how MutS and MSH2-MSH6 scan DNA and identify which DNA needs to be repaired. Because the systems are complex, the research requires large amounts of computer resources, on the order of tens of millions of CPU core hours over many years.

"We need high-level atomic resolution simulations to get insights into the answers we are searching for and we cannot run them on ordinary desktops," Feig said. "These are expensive calculations for which we need hundreds of CPUs to work simultaneously and the Texas Advanced Computing Center (TACC) resources made that possible."

As a user of the National Science Foundation's Extreme Science and Engineering Discovery Environment (XSEDE), Feig tasked TACC's Ranger and Stampede supercomputers to accelerate his research. Ranger served the national open science community for five years and was replaced by Stampede (the sixth most powerful supercomputer in the world) in January 2013.

DNA chains are made of four precise chemical base pairs with distinct compositions. In a paper published in the Journal of Physical Chemistry B (April 26, 2013), Feig and his research team showed that the identification and initiation of repair depended on how the MutS protein bound with the base mismatches.

"We believe that DNA bending facilitates the initial recognition of the mismatched base for repair," Feig said. "Normal DNA is like a stiff piece of rubber, relatively straight. It becomes possible to bend the DNA in places where there are defects."

The biological repair machinery seems to take advantage of this propensity by ‘testing' DNA to determine whether it can be bent easily. If that is the case, the protein has found a mismatch and repair is initiated.

"When the MutS protein is deficient in certain people, they have a high propensity to develop certain types of cancer," Feig said. "We're interested in understanding, first of all, how exactly this protein works. The long-term idea is to develop strategies for compensating for this protein, basically substituting some other mechanism for recognizing defective DNA and enabling repair."

The strongest link between diseases and defects from the MutS protein has been made for a specific type of genetically inherited colon cancer.

"If an essential protein like MutS is missing or less than adequate, then the cells will not behave in a normal way," he explained. "They will turn cancerous. The cells will refuse to die and proliferate in an uncontrollable state."

In these cases, cancer is not a result of damaged DNA, but occurs because of a problem in the DNA repair mechanism itself.

"It probably has effects on many other cancers as well, because all the cancers are ultimately linked to defective DNA," he said. "If DNA damage is not recognized and repaired in time then it can lead to any type of cancer. It is a fairly generic mechanism."

According to Matt Cowperthwaite, TACC's medical informatics programs coordinator, Feig's research is enormously important for advancing our understanding of how cells repair the mistakes that inevitably occur during DNA replication. "For the first time, we have a mechanistic insight of how MutS finds mutations. This is extremely important research because the process of mutation underlies some of the deadliest diseases to affect humans, such as cancer."

Research in this area, being very fundamental in nature, throws up many challenges, but its potential in future impact, Feig believes, is tremendous.

"There are many proteins with different and important biological functions," he said. "Understanding their functions and roles in the human body will be a driving force for research in the near future."

The Texas Advanced Computing Center (TACC) at The University of Texas at Austin is one of the leading centers of computational excellence in the United States. The center's mission is to enable discoveries that advance science and society through the application of advanced computing technologies. To fulfill this mission, TACC identifies, evaluates, deploys, and supports powerful computing, visualization, and storage systems and software. TACC's staff experts help researchers and educators use these technologies effectively, and conduct research and development to make these technologies more powerful, more reliable, and easier to use. TACC staff also help encourage, educate, and train the next generation of researchers, empowering them to make discoveries that change the world.

Paromita Pain | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>