Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How DNA Repair Helps Prevent Cancer

19.08.2013
Researchers at Michigan State University use TACC supercomputers to understand DNA bending and repair mechanisms

The biological information that makes us unique is encoded in our DNA. DNA damage is a natural biological occurrence that happens every time cells divide and multiply. External factors such as overexposure to sunlight can also damage DNA.


Results from computer simulations show that it is energetically less expensive to bend mismatch-containing, defective DNA (G:T, C:C, C:T, G:A, G:G, T:T, A:A, A+:C) vs. non-defective DNA (containing A:T or G:C base pairs). DNA repair mechanisms likely take advantage of this feature to detect defective DNA based on an increased bending propensity.

Understanding how the human body recognizes damaged DNA and initiates repair fascinates Michael Feig, professor of biochemistry and molecular biology at Michigan State University. Feig studies the proteins MutS and MSH2-MSH6, which recognize defective DNA and initiate DNA repair. Natural DNA repair occurs when proteins like MutS (the primary protein responsible for recognizing a variety of DNA mismatches) scan the DNA, identify a defect, and recruit other enzymes to carry out the actual repair.

"The key here is to understand how these defects are recognized," Feig explained. "DNA damage occurs frequently and if you couldn't repair your DNA, then you won't live for very long." This is because damaged DNA, if left unrepaired, can compromise cells and lead to diseases such as cancer.

Feig, who has used national supercomputing resources since he was a graduate student in 1998, applied large-scale computer simulations to gain a detailed understanding of the cellular recognition process. Numerical simulations provide a very detailed view down to the atomistic level of how MutS and MSH2-MSH6 scan DNA and identify which DNA needs to be repaired. Because the systems are complex, the research requires large amounts of computer resources, on the order of tens of millions of CPU core hours over many years.

"We need high-level atomic resolution simulations to get insights into the answers we are searching for and we cannot run them on ordinary desktops," Feig said. "These are expensive calculations for which we need hundreds of CPUs to work simultaneously and the Texas Advanced Computing Center (TACC) resources made that possible."

As a user of the National Science Foundation's Extreme Science and Engineering Discovery Environment (XSEDE), Feig tasked TACC's Ranger and Stampede supercomputers to accelerate his research. Ranger served the national open science community for five years and was replaced by Stampede (the sixth most powerful supercomputer in the world) in January 2013.

DNA chains are made of four precise chemical base pairs with distinct compositions. In a paper published in the Journal of Physical Chemistry B (April 26, 2013), Feig and his research team showed that the identification and initiation of repair depended on how the MutS protein bound with the base mismatches.

"We believe that DNA bending facilitates the initial recognition of the mismatched base for repair," Feig said. "Normal DNA is like a stiff piece of rubber, relatively straight. It becomes possible to bend the DNA in places where there are defects."

The biological repair machinery seems to take advantage of this propensity by ‘testing' DNA to determine whether it can be bent easily. If that is the case, the protein has found a mismatch and repair is initiated.

"When the MutS protein is deficient in certain people, they have a high propensity to develop certain types of cancer," Feig said. "We're interested in understanding, first of all, how exactly this protein works. The long-term idea is to develop strategies for compensating for this protein, basically substituting some other mechanism for recognizing defective DNA and enabling repair."

The strongest link between diseases and defects from the MutS protein has been made for a specific type of genetically inherited colon cancer.

"If an essential protein like MutS is missing or less than adequate, then the cells will not behave in a normal way," he explained. "They will turn cancerous. The cells will refuse to die and proliferate in an uncontrollable state."

In these cases, cancer is not a result of damaged DNA, but occurs because of a problem in the DNA repair mechanism itself.

"It probably has effects on many other cancers as well, because all the cancers are ultimately linked to defective DNA," he said. "If DNA damage is not recognized and repaired in time then it can lead to any type of cancer. It is a fairly generic mechanism."

According to Matt Cowperthwaite, TACC's medical informatics programs coordinator, Feig's research is enormously important for advancing our understanding of how cells repair the mistakes that inevitably occur during DNA replication. "For the first time, we have a mechanistic insight of how MutS finds mutations. This is extremely important research because the process of mutation underlies some of the deadliest diseases to affect humans, such as cancer."

Research in this area, being very fundamental in nature, throws up many challenges, but its potential in future impact, Feig believes, is tremendous.

"There are many proteins with different and important biological functions," he said. "Understanding their functions and roles in the human body will be a driving force for research in the near future."

The Texas Advanced Computing Center (TACC) at The University of Texas at Austin is one of the leading centers of computational excellence in the United States. The center's mission is to enable discoveries that advance science and society through the application of advanced computing technologies. To fulfill this mission, TACC identifies, evaluates, deploys, and supports powerful computing, visualization, and storage systems and software. TACC's staff experts help researchers and educators use these technologies effectively, and conduct research and development to make these technologies more powerful, more reliable, and easier to use. TACC staff also help encourage, educate, and train the next generation of researchers, empowering them to make discoveries that change the world.

Paromita Pain | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>