Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How DNA Repair Helps Prevent Cancer

19.08.2013
Researchers at Michigan State University use TACC supercomputers to understand DNA bending and repair mechanisms

The biological information that makes us unique is encoded in our DNA. DNA damage is a natural biological occurrence that happens every time cells divide and multiply. External factors such as overexposure to sunlight can also damage DNA.


Results from computer simulations show that it is energetically less expensive to bend mismatch-containing, defective DNA (G:T, C:C, C:T, G:A, G:G, T:T, A:A, A+:C) vs. non-defective DNA (containing A:T or G:C base pairs). DNA repair mechanisms likely take advantage of this feature to detect defective DNA based on an increased bending propensity.

Understanding how the human body recognizes damaged DNA and initiates repair fascinates Michael Feig, professor of biochemistry and molecular biology at Michigan State University. Feig studies the proteins MutS and MSH2-MSH6, which recognize defective DNA and initiate DNA repair. Natural DNA repair occurs when proteins like MutS (the primary protein responsible for recognizing a variety of DNA mismatches) scan the DNA, identify a defect, and recruit other enzymes to carry out the actual repair.

"The key here is to understand how these defects are recognized," Feig explained. "DNA damage occurs frequently and if you couldn't repair your DNA, then you won't live for very long." This is because damaged DNA, if left unrepaired, can compromise cells and lead to diseases such as cancer.

Feig, who has used national supercomputing resources since he was a graduate student in 1998, applied large-scale computer simulations to gain a detailed understanding of the cellular recognition process. Numerical simulations provide a very detailed view down to the atomistic level of how MutS and MSH2-MSH6 scan DNA and identify which DNA needs to be repaired. Because the systems are complex, the research requires large amounts of computer resources, on the order of tens of millions of CPU core hours over many years.

"We need high-level atomic resolution simulations to get insights into the answers we are searching for and we cannot run them on ordinary desktops," Feig said. "These are expensive calculations for which we need hundreds of CPUs to work simultaneously and the Texas Advanced Computing Center (TACC) resources made that possible."

As a user of the National Science Foundation's Extreme Science and Engineering Discovery Environment (XSEDE), Feig tasked TACC's Ranger and Stampede supercomputers to accelerate his research. Ranger served the national open science community for five years and was replaced by Stampede (the sixth most powerful supercomputer in the world) in January 2013.

DNA chains are made of four precise chemical base pairs with distinct compositions. In a paper published in the Journal of Physical Chemistry B (April 26, 2013), Feig and his research team showed that the identification and initiation of repair depended on how the MutS protein bound with the base mismatches.

"We believe that DNA bending facilitates the initial recognition of the mismatched base for repair," Feig said. "Normal DNA is like a stiff piece of rubber, relatively straight. It becomes possible to bend the DNA in places where there are defects."

The biological repair machinery seems to take advantage of this propensity by ‘testing' DNA to determine whether it can be bent easily. If that is the case, the protein has found a mismatch and repair is initiated.

"When the MutS protein is deficient in certain people, they have a high propensity to develop certain types of cancer," Feig said. "We're interested in understanding, first of all, how exactly this protein works. The long-term idea is to develop strategies for compensating for this protein, basically substituting some other mechanism for recognizing defective DNA and enabling repair."

The strongest link between diseases and defects from the MutS protein has been made for a specific type of genetically inherited colon cancer.

"If an essential protein like MutS is missing or less than adequate, then the cells will not behave in a normal way," he explained. "They will turn cancerous. The cells will refuse to die and proliferate in an uncontrollable state."

In these cases, cancer is not a result of damaged DNA, but occurs because of a problem in the DNA repair mechanism itself.

"It probably has effects on many other cancers as well, because all the cancers are ultimately linked to defective DNA," he said. "If DNA damage is not recognized and repaired in time then it can lead to any type of cancer. It is a fairly generic mechanism."

According to Matt Cowperthwaite, TACC's medical informatics programs coordinator, Feig's research is enormously important for advancing our understanding of how cells repair the mistakes that inevitably occur during DNA replication. "For the first time, we have a mechanistic insight of how MutS finds mutations. This is extremely important research because the process of mutation underlies some of the deadliest diseases to affect humans, such as cancer."

Research in this area, being very fundamental in nature, throws up many challenges, but its potential in future impact, Feig believes, is tremendous.

"There are many proteins with different and important biological functions," he said. "Understanding their functions and roles in the human body will be a driving force for research in the near future."

The Texas Advanced Computing Center (TACC) at The University of Texas at Austin is one of the leading centers of computational excellence in the United States. The center's mission is to enable discoveries that advance science and society through the application of advanced computing technologies. To fulfill this mission, TACC identifies, evaluates, deploys, and supports powerful computing, visualization, and storage systems and software. TACC's staff experts help researchers and educators use these technologies effectively, and conduct research and development to make these technologies more powerful, more reliable, and easier to use. TACC staff also help encourage, educate, and train the next generation of researchers, empowering them to make discoveries that change the world.

Paromita Pain | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>