Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA nano-adapters: stimulus for single-molecule DNA sequencing

10.06.2014

Scientists at the Braunschweig University of Technology have developed tiny adapters that allow the coupling of molecules to nanostructures and their precise positioning on the scale of a millionth of a millimeter.

This development is of relevance especially for DNA sequencing, which is considered the key technology for the analysis of inherited diseases. The latest results are presented in the current issue of the journal “Nano Letters”.


Immobilization strategy: DNA origami (grey rectangles) equipped with a fluorescent dye (red) occupy the small holes in the metal film (ZMWs) in a way that only one adapter fits per cavity.

TU Braunschweig


Comparison between optimal Poisson distribution and the experimentally measured distribution in ZMWs of 200 nm.

TU Braunschweig

For DNA sequencing, individual nucleotides are analyzed which are the building blocks of DNA. “Monitoring the incorporation of single nucleotides into a full DNA strand in real-time is a revolutionary method”, Prof. Philip Tinnefeld explains. “It’s almost a live broadcast”.

Special proteins, the so-called DNA polymerases, incorporate the nucleotides in a zipper like fashion to build a double stranded DNA strand. In order to observe this process and extract the order of nucleotides, scientists employ special cover slides. A glass slide is coated with a thin metal film that contains tiny holes, so-called zeromode waveguides (ZMWs).

“The challenge for this application is to equip each of these nano-holes with exactly one polymerase that utilize the nucleotides”, Prof. Philip Tinnefeld says. Usually, these biomolecules are deposited randomly in the ZMWs, which results in many empty ZMWs while others contain multiple polymerase molecules. Even for the optimal situation, only 37 % of the holes can be used, as the expert for Nano-Bio-Sciences explains.

Coupling and positioning of molecules
His research group now achieved a more efficient usage of the ZMWs by developing a new binding strategy. For this, the nano-experts from the Institute for Physical and Theoretical Chemistry in the Laboratory of Emerging Nanometrology (Braunschweig University of Technology) could use their experience of working with the so-called DNA origami technique: the Braunschweig scientists literally fold precisely fitting structures from single viral DNA strands.

The nano-adapters were designed such that exactly one DNA origami can bind in every ZMW. The nano-adapters additionally provide docking points for functional units, like fluorescent dyes or the polymerase molecules that are used for DNA sequencing. “With our novel strategy, we connect single molecules via DNA origami with the lithographically fabricated ZMWs. This procedure can improve the efficiency of DNA sequencing and also be beneficial for applications in other areas of research like molecular electronics”, Prof. Tinnefeld summarizes.

About the project
This research project of the NanoBioSciences group of Prof. Philip Tinnfeld (Institute for Physical and Theoretical Chemistry) was conducted at the new Laboratory of Emerging Nanometrology of the Braunschweig University of Technology and was funded by a Starting Grant of the European Research Council (SiMBA).

Publication
E. Pibiri, P. Holzmeister, B. Lalkens, G.P. Acuna, P. Tinnefeld (2014):Single-Molecule Positioning in Zeromode Waveguides by DNA Origami Nano-Adapters - Nano Lett.

Contact
Prof. Philip Tinnefeld
Dr. Guillermo Acuna
Institut für Physikalische und Theoretische Chemie
Arbeitsgruppe NanoBioSciences
Laboratory of Emerging Nanometrology
Technische Universität Braunschweig
Hans-Sommer-Strasse 10
38106 Braunschweig
Tel: 0531 391 5330
E-Mail: p.tinnefeld@tu-braunschweig.de
www.tu-braunschweig.de/pci
www.tu-braunschweig.de/mib/lena

Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/?p=6978

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

Further reports about: DNA Laboratory Nano Technology binding docking fluorescent individual nucleotides procedure stimulus structures technique

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>