Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA nano-adapters: stimulus for single-molecule DNA sequencing

10.06.2014

Scientists at the Braunschweig University of Technology have developed tiny adapters that allow the coupling of molecules to nanostructures and their precise positioning on the scale of a millionth of a millimeter.

This development is of relevance especially for DNA sequencing, which is considered the key technology for the analysis of inherited diseases. The latest results are presented in the current issue of the journal “Nano Letters”.


Immobilization strategy: DNA origami (grey rectangles) equipped with a fluorescent dye (red) occupy the small holes in the metal film (ZMWs) in a way that only one adapter fits per cavity.

TU Braunschweig


Comparison between optimal Poisson distribution and the experimentally measured distribution in ZMWs of 200 nm.

TU Braunschweig

For DNA sequencing, individual nucleotides are analyzed which are the building blocks of DNA. “Monitoring the incorporation of single nucleotides into a full DNA strand in real-time is a revolutionary method”, Prof. Philip Tinnefeld explains. “It’s almost a live broadcast”.

Special proteins, the so-called DNA polymerases, incorporate the nucleotides in a zipper like fashion to build a double stranded DNA strand. In order to observe this process and extract the order of nucleotides, scientists employ special cover slides. A glass slide is coated with a thin metal film that contains tiny holes, so-called zeromode waveguides (ZMWs).

“The challenge for this application is to equip each of these nano-holes with exactly one polymerase that utilize the nucleotides”, Prof. Philip Tinnefeld says. Usually, these biomolecules are deposited randomly in the ZMWs, which results in many empty ZMWs while others contain multiple polymerase molecules. Even for the optimal situation, only 37 % of the holes can be used, as the expert for Nano-Bio-Sciences explains.

Coupling and positioning of molecules
His research group now achieved a more efficient usage of the ZMWs by developing a new binding strategy. For this, the nano-experts from the Institute for Physical and Theoretical Chemistry in the Laboratory of Emerging Nanometrology (Braunschweig University of Technology) could use their experience of working with the so-called DNA origami technique: the Braunschweig scientists literally fold precisely fitting structures from single viral DNA strands.

The nano-adapters were designed such that exactly one DNA origami can bind in every ZMW. The nano-adapters additionally provide docking points for functional units, like fluorescent dyes or the polymerase molecules that are used for DNA sequencing. “With our novel strategy, we connect single molecules via DNA origami with the lithographically fabricated ZMWs. This procedure can improve the efficiency of DNA sequencing and also be beneficial for applications in other areas of research like molecular electronics”, Prof. Tinnefeld summarizes.

About the project
This research project of the NanoBioSciences group of Prof. Philip Tinnfeld (Institute for Physical and Theoretical Chemistry) was conducted at the new Laboratory of Emerging Nanometrology of the Braunschweig University of Technology and was funded by a Starting Grant of the European Research Council (SiMBA).

Publication
E. Pibiri, P. Holzmeister, B. Lalkens, G.P. Acuna, P. Tinnefeld (2014):Single-Molecule Positioning in Zeromode Waveguides by DNA Origami Nano-Adapters - Nano Lett.

Contact
Prof. Philip Tinnefeld
Dr. Guillermo Acuna
Institut für Physikalische und Theoretische Chemie
Arbeitsgruppe NanoBioSciences
Laboratory of Emerging Nanometrology
Technische Universität Braunschweig
Hans-Sommer-Strasse 10
38106 Braunschweig
Tel: 0531 391 5330
E-Mail: p.tinnefeld@tu-braunschweig.de
www.tu-braunschweig.de/pci
www.tu-braunschweig.de/mib/lena

Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/?p=6978

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

Further reports about: DNA Laboratory Nano Technology binding docking fluorescent individual nucleotides procedure stimulus structures technique

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

Telescopes team up to find distant Uranus-sized planet through microlensing

31.07.2015 | Physics and Astronomy

Quantum Matter Stuck in Unrest

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>