Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA nano-adapters: stimulus for single-molecule DNA sequencing

10.06.2014

Scientists at the Braunschweig University of Technology have developed tiny adapters that allow the coupling of molecules to nanostructures and their precise positioning on the scale of a millionth of a millimeter.

This development is of relevance especially for DNA sequencing, which is considered the key technology for the analysis of inherited diseases. The latest results are presented in the current issue of the journal “Nano Letters”.


Immobilization strategy: DNA origami (grey rectangles) equipped with a fluorescent dye (red) occupy the small holes in the metal film (ZMWs) in a way that only one adapter fits per cavity.

TU Braunschweig


Comparison between optimal Poisson distribution and the experimentally measured distribution in ZMWs of 200 nm.

TU Braunschweig

For DNA sequencing, individual nucleotides are analyzed which are the building blocks of DNA. “Monitoring the incorporation of single nucleotides into a full DNA strand in real-time is a revolutionary method”, Prof. Philip Tinnefeld explains. “It’s almost a live broadcast”.

Special proteins, the so-called DNA polymerases, incorporate the nucleotides in a zipper like fashion to build a double stranded DNA strand. In order to observe this process and extract the order of nucleotides, scientists employ special cover slides. A glass slide is coated with a thin metal film that contains tiny holes, so-called zeromode waveguides (ZMWs).

“The challenge for this application is to equip each of these nano-holes with exactly one polymerase that utilize the nucleotides”, Prof. Philip Tinnefeld says. Usually, these biomolecules are deposited randomly in the ZMWs, which results in many empty ZMWs while others contain multiple polymerase molecules. Even for the optimal situation, only 37 % of the holes can be used, as the expert for Nano-Bio-Sciences explains.

Coupling and positioning of molecules
His research group now achieved a more efficient usage of the ZMWs by developing a new binding strategy. For this, the nano-experts from the Institute for Physical and Theoretical Chemistry in the Laboratory of Emerging Nanometrology (Braunschweig University of Technology) could use their experience of working with the so-called DNA origami technique: the Braunschweig scientists literally fold precisely fitting structures from single viral DNA strands.

The nano-adapters were designed such that exactly one DNA origami can bind in every ZMW. The nano-adapters additionally provide docking points for functional units, like fluorescent dyes or the polymerase molecules that are used for DNA sequencing. “With our novel strategy, we connect single molecules via DNA origami with the lithographically fabricated ZMWs. This procedure can improve the efficiency of DNA sequencing and also be beneficial for applications in other areas of research like molecular electronics”, Prof. Tinnefeld summarizes.

About the project
This research project of the NanoBioSciences group of Prof. Philip Tinnfeld (Institute for Physical and Theoretical Chemistry) was conducted at the new Laboratory of Emerging Nanometrology of the Braunschweig University of Technology and was funded by a Starting Grant of the European Research Council (SiMBA).

Publication
E. Pibiri, P. Holzmeister, B. Lalkens, G.P. Acuna, P. Tinnefeld (2014):Single-Molecule Positioning in Zeromode Waveguides by DNA Origami Nano-Adapters - Nano Lett.

Contact
Prof. Philip Tinnefeld
Dr. Guillermo Acuna
Institut für Physikalische und Theoretische Chemie
Arbeitsgruppe NanoBioSciences
Laboratory of Emerging Nanometrology
Technische Universität Braunschweig
Hans-Sommer-Strasse 10
38106 Braunschweig
Tel: 0531 391 5330
E-Mail: p.tinnefeld@tu-braunschweig.de
www.tu-braunschweig.de/pci
www.tu-braunschweig.de/mib/lena

Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/?p=6978

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

Further reports about: DNA Laboratory Nano Technology binding docking fluorescent individual nucleotides procedure stimulus structures technique

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>