Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA marker predicts platinum drug response in breast, ovarian cancer

Marker identifies tumors unable to repair DNA damage by platinum agents

Scientists from Brigham and Women's Hospital and Dana-Farber Cancer Institute and their colleagues have found a genetic marker that predicts which aggressive "triple negative" breast cancers and certain ovarian cancers will likely respond to platinum-based chemotherapies.

The marker, found on chromosomes within the cancer cells, could lead to a test for identifying patients whose cancers could be effectively treated by a single platinum-based drug, "and avoid the toxicities of other chemotherapy combinations," says Andrea Richardson, MD, PhD, co senior author of the study and a surgical pathologist at Brigham and Women's and Dana-Farber.

The report is being published in the April issue of Cancer Discovery, a journal of the American Association for Cancer Research.

Many cancer treatments work by damaging DNA within tumor cells, rendering the cells unable to grow and divide. While some cancer cells can readily repair broken DNA molecules, allowing them to survive drug or radiation therapy, others have lost this repair capacity, making them vulnerable to DNA-damaging agents.

The new marker, Richardson says, flags breast and ovarian cancer cells that can't repair the type of DNA damage caused by treatment with platinum drugs, including cisplatin and carboplatin. A clinical test for the marker could be particularly valuable in treating triple-negative breast cancers, which are resistant to anti-hormonal therapies or targeted drugs like Herceptin.

"We currently do not have any targeted therapies for patients with triple-negative breast cancer, so if these laboratory findings are confirmed and an assay is created to predict sensitivity to drugs that target defective DNA repair, it would be a major step forward," says Richardson, the primary pathologist for the study. However, she adds, such an assay isn't likely to be developed soon.

The new genetic marker was discovered when Richardson and others studied tumor tissue collected from triple negative breast cancer patients who participated in two clinical trials of platinum drug therapy. Triple-negative tumors develop in about 80 percent of women who carry mutated breast cancer genes BRCA1 and BRCA2. These tumors are characterized by a lack of estrogen, progesterone, and HER2 receptors, which makes them unresponsive to targeted treatments that block those receptors.

The two clinical trials, led by Judy Garber, MD, MPH, of Dana-Farber, were investigating whether platinum drugs would also be effective in so-called "sporadic" triple negative tumors -- those that develop in the absence of BRCA1 and BRCA2 genetic mutations. Overall, about 20 percent of breast cancers are triple negative. Some of these cancers respond to standard chemotherapy drugs, while others don't. The patients whose triple negative tumors do not go away after chemotherapy have a particularly poor prognosis.

A total of 79 patients in the two trials received cisplatin alone or in combination with bevacizumab (Avastin) to shrink their tumors prior to removing them surgically. In both trials, approximately 40 percent of patients had a complete or near-complete disappearance of the cancer after the cisplatin therapy.

The researchers analyzed tissue from the patients before and after the cisplatin treatment, looking for features in the cancer cells' DNA that predicted a favorable response to the pre-operative chemotherapy. They found one -- a high level of partial chromosome losses in the tumor cells that responded to the cisplatin treatment.

The tell-tale pattern, or genetic marker, was finding a high number of chromosome regions showing allelic imbalance, meaning that instead of the normal equal distribution of DNA from both parents, the tumor cells had lost one parental copy of the DNA in parts of many chromosomes. This didn't surprise the researchers: in fact, they expected it, since allelic imbalance is also found in triple-negative breast cancers associated with BRCA 1 and BRCA2 mutations. Specifically, the strongest indicator of defective DNA damage repair was in cancer cells when the regions of allelic imbalance included the tips of the chromosomes, called telomeres.

The scientists also analyzed data on tumor characteristics and treatment outcomes from The Cancer Genome Atlas, a federally funded database, to demonstrate that allelic imbalance predicted defective DNA damage repair and sensitivity to platinum drugs in serous ovarian cancers.

In the future, the scientists say, allelic instability "may prove useful in predicting response to a variety of therapeutic strategies exploiting defective DNA repair."

Along with Richardson, co-senior authors of the report are Daniel Silver, MD, PhD, of Dana-Farber, and Zoltan Szallasi, MD, of Children's Hospital Boston. First authors are Nicolai Birkbak, PhD, and Zhigang Wang, PhD, BM, of Brigham and Women's and Dana-Farber.

The research was supported by grants from the National Cancer Institute and several foundations.

Dana-Farber Cancer Institute ( is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Twitter: @danafarber or Facebook:

Bill Schaller | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>