Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA marker predicts platinum drug response in breast, ovarian cancer

22.03.2012
Marker identifies tumors unable to repair DNA damage by platinum agents

Scientists from Brigham and Women's Hospital and Dana-Farber Cancer Institute and their colleagues have found a genetic marker that predicts which aggressive "triple negative" breast cancers and certain ovarian cancers will likely respond to platinum-based chemotherapies.

The marker, found on chromosomes within the cancer cells, could lead to a test for identifying patients whose cancers could be effectively treated by a single platinum-based drug, "and avoid the toxicities of other chemotherapy combinations," says Andrea Richardson, MD, PhD, co senior author of the study and a surgical pathologist at Brigham and Women's and Dana-Farber.

The report is being published in the April issue of Cancer Discovery, a journal of the American Association for Cancer Research.

Many cancer treatments work by damaging DNA within tumor cells, rendering the cells unable to grow and divide. While some cancer cells can readily repair broken DNA molecules, allowing them to survive drug or radiation therapy, others have lost this repair capacity, making them vulnerable to DNA-damaging agents.

The new marker, Richardson says, flags breast and ovarian cancer cells that can't repair the type of DNA damage caused by treatment with platinum drugs, including cisplatin and carboplatin. A clinical test for the marker could be particularly valuable in treating triple-negative breast cancers, which are resistant to anti-hormonal therapies or targeted drugs like Herceptin.

"We currently do not have any targeted therapies for patients with triple-negative breast cancer, so if these laboratory findings are confirmed and an assay is created to predict sensitivity to drugs that target defective DNA repair, it would be a major step forward," says Richardson, the primary pathologist for the study. However, she adds, such an assay isn't likely to be developed soon.

The new genetic marker was discovered when Richardson and others studied tumor tissue collected from triple negative breast cancer patients who participated in two clinical trials of platinum drug therapy. Triple-negative tumors develop in about 80 percent of women who carry mutated breast cancer genes BRCA1 and BRCA2. These tumors are characterized by a lack of estrogen, progesterone, and HER2 receptors, which makes them unresponsive to targeted treatments that block those receptors.

The two clinical trials, led by Judy Garber, MD, MPH, of Dana-Farber, were investigating whether platinum drugs would also be effective in so-called "sporadic" triple negative tumors -- those that develop in the absence of BRCA1 and BRCA2 genetic mutations. Overall, about 20 percent of breast cancers are triple negative. Some of these cancers respond to standard chemotherapy drugs, while others don't. The patients whose triple negative tumors do not go away after chemotherapy have a particularly poor prognosis.

A total of 79 patients in the two trials received cisplatin alone or in combination with bevacizumab (Avastin) to shrink their tumors prior to removing them surgically. In both trials, approximately 40 percent of patients had a complete or near-complete disappearance of the cancer after the cisplatin therapy.

The researchers analyzed tissue from the patients before and after the cisplatin treatment, looking for features in the cancer cells' DNA that predicted a favorable response to the pre-operative chemotherapy. They found one -- a high level of partial chromosome losses in the tumor cells that responded to the cisplatin treatment.

The tell-tale pattern, or genetic marker, was finding a high number of chromosome regions showing allelic imbalance, meaning that instead of the normal equal distribution of DNA from both parents, the tumor cells had lost one parental copy of the DNA in parts of many chromosomes. This didn't surprise the researchers: in fact, they expected it, since allelic imbalance is also found in triple-negative breast cancers associated with BRCA 1 and BRCA2 mutations. Specifically, the strongest indicator of defective DNA damage repair was in cancer cells when the regions of allelic imbalance included the tips of the chromosomes, called telomeres.

The scientists also analyzed data on tumor characteristics and treatment outcomes from The Cancer Genome Atlas, a federally funded database, to demonstrate that allelic imbalance predicted defective DNA damage repair and sensitivity to platinum drugs in serous ovarian cancers.

In the future, the scientists say, allelic instability "may prove useful in predicting response to a variety of therapeutic strategies exploiting defective DNA repair."

Along with Richardson, co-senior authors of the report are Daniel Silver, MD, PhD, of Dana-Farber, and Zoltan Szallasi, MD, of Children's Hospital Boston. First authors are Nicolai Birkbak, PhD, and Zhigang Wang, PhD, BM, of Brigham and Women's and Dana-Farber.

The research was supported by grants from the National Cancer Institute and several foundations.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Twitter: @danafarber or Facebook: facebook.com/danafarbercancerinstitute.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>