Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA as Future Electronic Components

03.07.2012
Conducting nanostructures based on metallized DNA

Our electronic devices are getting smaller and smaller while doing more and more. Using conventional materials, we will soon reach the practical limit. The electronics of tomorrow require alternatives, such as nanowires made of DNA that can serve as conductive paths and nanotransistors for miniature circuits. In the journal Angewandte Chemie, German scientists have now described a new method for the production of stable, conducting DNA nanowires.

DNA is more than a carrier of genetic information; it is also an interesting building material for nanotechnology. This is because of its extraordinary self-organizational properties. DNA is thus often used as a “mold” for the production of nanoscale structures. Its use in the assembly of electronic circuits is hampered by the fact that DNA is a very poor conductor of electricity. One way to get around this is by depositing metal onto the DNA strands.

Scientists at the RWTH Aachen and the University of Munich have now developed a new strategy for the controlled production and metallization of DNA nanostructures. Led by Ulrich Simon, the team used a DNA strand consisting of an immobilization sequence and a metallization sequence. Several such strands are strung together so that the resulting DNA is made of alternating sequences.

The immobilization sequence contains alkyne groups. These allow the DNA to be snapped into place on a silicon wafer coated with azide groups in what is known as a “click” reaction. The other DNA segment has two tasks: it is equipped with functional groups that cause the aggregation of silver particles and can also attach DNA strands to each other.

The DNA strands are stretched, deposited onto the wafers, and attached by the “click” reaction. During the subsequent metallization with silver particles, neighboring strands are simultaneously cross-linked to form multistrands. These have significantly higher structural stability than single strands. In the future, this method could also be used to integrate the DNA strands into programmable DNA architectures to allow for the positioning and binding of complex structures on prestructured substrates.

Deposition of the silver particles does not complete the metallization process. In a second step, which resembles the development of photographs, gold from a solution can be deposited onto the silver particles. Changing the duration of the gold deposition process allows for variation of the diameter of the resulting nanowires.

This new method allowed the scientists to obtain micrometer-long, electrically contactable nanowires that have potential for development into further miniaturized circuits.

About the Author
Ulrich Simon holds the Chair of Inorganic Chemistry and Electrochemistry at RWTH Aachen University and is member of the Jülich-Aachen Research Alliance (JARA). His research interests include the synthesis, the assembly, and the electrical properties of nanoscaled materials, as well as their application in nanoelectronics and biomedicine.
Author: Ulrich Simon, RWTH Aachen University (Germany),
http://www.ac.rwth-aachen.de/extern/ak-simon/ulrich_simon.htm
Title: Surface "Click" Reaction of DNA followed by Directed Metalization for the Construction of Contactable Conducting Nanostructures

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201202401

Ulrich Simon | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>