Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA fingerprinting pioneer discovers role of key genetic catalyst for human diversity

06.09.2010
Research by DNA fingerprinting pioneer and his team at University of Leicester defines engine for change in genetic hotspots

One of the key drivers of human evolution and diversity, accounting for changes that occur between different generations of people, is explained by new research published today (Sept 5) by world-renowned scientist Professor Sir Alec Jeffreys, who discovered DNA fingerprinting at the University of Leicester.

Professor Jeffreys has spent over two decades since his landmark discovery in 1984 investigating what he describes as "pretty bizarre bits of DNA" - highly variable repeated parts of DNA called 'minisatellites' - found in the human genome. Sir Alec observed that these seemed to be changing and "picking up mutations at an extraordinary rate" when compared to other DNA.

Now, in a paper published online in Nature Genetics (Sept 5), Sir Alec and his team in the Department of Genetics at the University of Leicester have demonstrated the remarkable influence of a particular gene on the development of diversity in humans.

The work was funded by the Medical Research Council, the Wellcome Trust, the Boehringer Ingelheim Fonds, the Royal Society and the Louis-Jeantet Foundation. Professor Jeffreys is Royal Society Wolfson Research Professor of Genetics at Leicester.

Sir Alec said: "In each generation our genetic make-up gets 'reshuffled', like a genetic pack of cards, by a process called recombination - a fundamental engine driving diversity. The work we have done over the past 10 years at Leicester has been key to understanding recombination in humans, and has allowed the molecular definition of recombination 'hotspots' - small regions in which the reshuffling process is focused.

"Our new study has focused on a gene called PRDM9 that makes a protein which binds to DNA and triggers hotspot activity. The exciting finding is that people with different versions of PRDM9 show profoundly different recombination behaviours, not only in hotspots but also in chromosomal rearrangements that cause some genetic disorders."

Ironically, the variation in PRDM9 is due to a minisatellite within the gene itself. Sir Alec said: 'I've come full circle – starting out with minisatellites to develop DNA fingerprinting, and arriving at a gene containing a minisatellite that plays a key role in driving all kinds of human DNA diversity, including variation at minisatellites. An intriguing possibility is that it is even driving its own evolution!'

Sir Alec believes the research, along with that of others working in the field, will inevitably further scientists' ability to understand the basic processes that make us all genetically unique, as well as defining an entirely new class of genetic risk factor for numerous disease-causing DNA rearrangements that can arise when recombination goes wrong.

These findings also provide a neat solution to one great puzzle of recombination hotspots – namely that they appear and disappear rapidly during evolution. Sir Alec said 'We've shown that hotspots have a strange propensity for self-destruction, so how can they possibly exist? The PRDM9 minisatellite gives the answer – it evolves rapidly, like any other unstable minisatellite, and keeps churning out variants that can trigger new hotspots, replenishing those that have committed suicide. A totally crazy mechanism to ensure that recombination keeps going, but typical of the weird solutions that evolution can throw up'.

NOTES TO EDITORS:

"PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans" by Jeffreys has been scheduled for Advance Online Publication (AOP) on Nature Genetics's website on 05 Sept at 1800 London time / 1300 US Eastern time, which is when the embargo will lift.

The full listing of authors and their affiliations for this paper is as follows:

Ingrid L Berg, Rita Neumann, Kwan-Wood G Lam, Shriparna Sarbajna, Linda Odenthal-Hesse, Celia A May & Alec J Jeffreys

Department of Genetics, University of Leicester, Leicester, UK.

Issued by University of Leicester press office
0116 252 3335 email pressoffice@le.ac.uk
For almost 100 years the Medical Research Council has improved the health of people in the UK and around the world by supporting the highest quality science. The MRC invests in world-class scientists. It has produced 29 Nobel Prize winners and sustains a flourishing environment for internationally recognised research. The MRC focuses on making an impact and provides the financial muscle and scientific expertise behind medical breakthroughs, including one of the first antibiotics penicillin, the structure of DNA and the lethal link between smoking and cancer. Today MRC funded scientists tackle research into the major health challenges of the 21st century www.mrc.ac.uk.

The Wellcome Trust is a global charity dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests.

| EurekAlert!
Further information:
http://www.le.ac.uk
http://www.wellcome.ac.uk

Further reports about: DNA DNA fingerprinting Genetics MRC Medical Wellness Nobel Prize PRDM9 genetic disorder

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>