Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using DNA in Fight Against Illegal Logging

01.07.2011
Advances in DNA 'fingerprinting' and other genetic techniques led by Adelaide researchers are making it harder for illegal loggers to get away with destroying protected rainforests.

DNA fingerprinting for timber products has grown in international recognition due to research led by the University of Adelaide that traces individual logs or wood products back to the forests where they came from.

Professor Andrew Lowe, Director of the University's Australian Centre for Evolutionary Biology and Biodiversity, and Dr Hugh Cross, Molecular Biologist at the State Herbarium of South Australia, have been working with Singapore company Double Helix Tracking Technologies (DoubleHelix), a leader in applied genetics for forest trade and conservation.

In a new paper published in the journal of the International Association of Wood Anatomists, Professor Lowe and Dr Cross say DNA science has made a number of key advances in the fight against illegal loggers.

"Molecular marker methods have been applied to freshly cut wood for a number of years, and it's now also possible to extract and use genetic material from wood products and old samples of wood," Professor Lowe says.

"We can use 'DNA barcoding' to identify species, 'DNA fingerprinting' to identify and track individual logs or wood products, and we can also verify the region the wood was sourced from.

"The advancement of genetics technologies means that large-scale screening of wood DNA can be done cheaply, routinely, quickly and with a statistical certainty that can be used in a court of law. Importantly, these methods can be applied at a customs entry point to the country – certification documents can be falsified, but DNA cannot."

An estimated 10% of wood imported into Australia consists of illegally traded timber, which has been cut down outside designated logging areas or outside agreed environmental controls. Australian companies have been the first in the world to purchase timber products that use DNA fingerprinting, as part of proof of legal origin starting back in 2007 – European and American importers are now following suit.

Jonathan Geach, a Director of DoubleHelix, says: "As the technology is now proven scientifically and commercially, we're looking at a large-scale application in the Congo Basin, as well as working with governments in Europe and America to tighten the grip on illegal timber trade.

"Having Professor Lowe as a leading researcher from the University of Adelaide and as an active member of our team has been tremendously important in driving the role of DNA tracing in timber internationally."

Professor Lowe says a number of improvements in genetic marker methods still need to be made, such as for old or degraded wood samples. "Nevertheless, the advances in the use of DNA to identify wood are exciting," he says.

This research is closely aligned with another major project, to develop a 'DNA barcode' for every tree and grass species on earth. "The Barcode of Life projects will take five years to complete, but the information will lead to a step change in the way we can manage our species and ecosystems right across the globe," Professor Lowe says.

The University of Adelaide will host the 4th International Barcode of Life Conference later this year (28 November to 3 December). It's the first time this conference will be held in the Southern Hemisphere.

Media contacts:

Professor Andrew Lowe
Director, Australian Centre for Evolutionary Biology and Biodiversity
The University of Adelaide
Phone: +61 8 8313 1149
andrew.lowe@adelaide.edu.au
Jonathan Geach
Director of Communications
Double Helix Tracking Technologies, Singapore
Phone: +65 6227 9706
j@doublehelixtracking.com

Jonathan Geach | Newswise Science News
Further information:
http://www.adelaide.edu.au
http://www.doublehelixtracking.com

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>