Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using DNA in Fight Against Illegal Logging

01.07.2011
Advances in DNA 'fingerprinting' and other genetic techniques led by Adelaide researchers are making it harder for illegal loggers to get away with destroying protected rainforests.

DNA fingerprinting for timber products has grown in international recognition due to research led by the University of Adelaide that traces individual logs or wood products back to the forests where they came from.

Professor Andrew Lowe, Director of the University's Australian Centre for Evolutionary Biology and Biodiversity, and Dr Hugh Cross, Molecular Biologist at the State Herbarium of South Australia, have been working with Singapore company Double Helix Tracking Technologies (DoubleHelix), a leader in applied genetics for forest trade and conservation.

In a new paper published in the journal of the International Association of Wood Anatomists, Professor Lowe and Dr Cross say DNA science has made a number of key advances in the fight against illegal loggers.

"Molecular marker methods have been applied to freshly cut wood for a number of years, and it's now also possible to extract and use genetic material from wood products and old samples of wood," Professor Lowe says.

"We can use 'DNA barcoding' to identify species, 'DNA fingerprinting' to identify and track individual logs or wood products, and we can also verify the region the wood was sourced from.

"The advancement of genetics technologies means that large-scale screening of wood DNA can be done cheaply, routinely, quickly and with a statistical certainty that can be used in a court of law. Importantly, these methods can be applied at a customs entry point to the country – certification documents can be falsified, but DNA cannot."

An estimated 10% of wood imported into Australia consists of illegally traded timber, which has been cut down outside designated logging areas or outside agreed environmental controls. Australian companies have been the first in the world to purchase timber products that use DNA fingerprinting, as part of proof of legal origin starting back in 2007 – European and American importers are now following suit.

Jonathan Geach, a Director of DoubleHelix, says: "As the technology is now proven scientifically and commercially, we're looking at a large-scale application in the Congo Basin, as well as working with governments in Europe and America to tighten the grip on illegal timber trade.

"Having Professor Lowe as a leading researcher from the University of Adelaide and as an active member of our team has been tremendously important in driving the role of DNA tracing in timber internationally."

Professor Lowe says a number of improvements in genetic marker methods still need to be made, such as for old or degraded wood samples. "Nevertheless, the advances in the use of DNA to identify wood are exciting," he says.

This research is closely aligned with another major project, to develop a 'DNA barcode' for every tree and grass species on earth. "The Barcode of Life projects will take five years to complete, but the information will lead to a step change in the way we can manage our species and ecosystems right across the globe," Professor Lowe says.

The University of Adelaide will host the 4th International Barcode of Life Conference later this year (28 November to 3 December). It's the first time this conference will be held in the Southern Hemisphere.

Media contacts:

Professor Andrew Lowe
Director, Australian Centre for Evolutionary Biology and Biodiversity
The University of Adelaide
Phone: +61 8 8313 1149
andrew.lowe@adelaide.edu.au
Jonathan Geach
Director of Communications
Double Helix Tracking Technologies, Singapore
Phone: +65 6227 9706
j@doublehelixtracking.com

Jonathan Geach | Newswise Science News
Further information:
http://www.adelaide.edu.au
http://www.doublehelixtracking.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>