Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA discovery opens new door to develop tools, therapies for hereditary cancers

09.07.2010
The finding is an important step forward in the field of molecular and structural biology

By solving the three-dimensional structure of a protein involved in repairing DNA errors, a group of McMaster University researchers have revealed new avenues to develop assessment tools and alternative treatments for people living with hereditary colorectal cancers.

The finding, published in the journal Molecular Cell, is an important step forward in the field of molecular and structural biology. The McMaster researchers uncovered how a specific protein, known as MutL, works within a cell to unleash the series of events that repair DNA when the replication machinery makes a mistake.

The research team was led by Alba Guarné, an associate professor in the Department of Biochemistry and Biomedical Sciences at McMaster, and involved researchers in Europe and the United States. The lead author of the study was Monica Pillon, a master's student in the Guarné laboratory.

Errors in DNA can arise from many types of damage including external harm, such as UV radiation or carcinogens, as well as by intrinsic cellular processes such as DNA replication. Failure to correct these errors leads to mutations, which results in cancer or a number of severe genetic disorders.

To prevent this from happening, cells posses a variety of DNA repair systems that correct these errors or trigger cell death when the damage cannot be fixed.

In this study, the investigators examined the DNA mismatch repair pathway, which corrects errors that have escaped proofreading during DNA replication. Specifically, they examined the protein MutL – a matchmaker protein – that recruits other enzymes and proteins within the cell to recognize, remove and correct mismatched DNA.

Research has shown that mutations on the genes that encode mismatch repair proteins give rise to two forms of familial cancer – hereditary non-polyposis colorectal cancer and Turcot Syndrome, which is associated with colorectal cancer as well as very aggressive brain tumours.

"The reason why it can lead to cancer is because if you don't have mismatch repair proteins that correct these errors, you're going to accumulate mutations," said Guarné. "People with defective mismatch repair genes develop cancers at very early ages. You would see a family that in their 30s has colorectal cancer and in their 40s they have it again. There's no way you can prevent that – you can't correct your DNA. As you grow older, you're going to accumulate mutations."

To determine how MutL is regulated, the researchers characterized the functional and structural domain of the protein that is involved in DNA mismatch repair. By mapping out MutL, they were able to unveil how the replication machinery turns MutL into an enzyme that cuts the error from the DNA. They also discovered that PCNA, another protein within the pathway, allows DNA to bind to MutL so it can be repaired.

"This is especially important because we've known for more than a decade that the PCNA protein is necessary to correct mismatches, but we didn't know its concrete function," Guarné said. "We're starting to understand that one of the roles of these replication proteins is to license the cutting activity of MutL."

The findings have profound implications in understanding the molecular mechanisms that predispose to cancer and Turcot syndrome development. In particular, it allows scientists to pinpoint mutations on the MutL protein in order to determine severity and long-term outcomes.

The results also provide new avenues to develop alternative cancer treatments, as the hope is future cancer therapies may be focused at the molecular level and involve blocking specific pathways within the cell.

The research was funded by the National Sciences and Engineering Research Council of Canada (NSERC) and the German Science Foundation.

The research appears in the July 9 print issue of Molecular Cell.

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>