Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA decoded by FSU biologist reveals 7 new mice species

08.07.2011
International team's discovery in Philippines showcases biodiversity, evolutionary wonders

After living incognito for millions of years in a remote area of a forested mountain range in the Philippines, seven newfound species of mice owe their recent discovery to DNA evidence and the Florida State University biologist who deciphered it.

What's more, the DNA drawn from the reclusive "new" mammals told FSU Associate Professor Scott J. Steppan an unusual evolutionary story. As he analyzed and compared the genetic codes of mice found in separate but proximate parts of a small area on Luzon, the largest Philippine island, he determined that while each mouse was a distinct species, they all belonged to the forest-mouse genus Apomys. That meant all seven mice were both "new" and closely related to one another.

"It is extraordinary, really almost unprecedented, to have so many closely related mammal species from such a small area that forms just one-half of one island –– let alone to have discovered so many so quickly," said Steppan, whose laboratory at Florida State coordinates the DNA sequencing portion of an ongoing biodiversity project led by Chicago's Field Museum of Natural History.

Part of an international team of biologists collaborating on the project, Steppan and colleagues from the United States and the Philippines describe the newly discovered species in Fieldiana (http://www.bioone.org/doi/abs/10.3158/2158-5520-2.1.1), the Field Museum's peer-reviewed journal.

"The Apomys genus is the product of millions of years of evolution in the Philippine archipelago," Steppan said, "but it also shows how very fast the process of evolution has been operating there, in terms of creating new species. Such cases of rapid diversification are useful examples to help us understand the origin of biodiversity in general."

Steppan's identification of the mice has made a marked difference in the number of mammal species (excluding bats) now known to be native to Luzon, increasing the current, official total by about 17 percent, from 42 to 49.

He said that, while the new Apomys species may have been elusive until now, they aren't rare. Rather, some are among the most abundant mammals in their respective forests and, as such, are vital to the local ecosystem, which acts as a watershed for the human communities. The seed- and earthworm-eating mice were hard to find primarily because of their extremely limited geographic ranges.

Unfortunately, their limited ranges make them susceptible to extinction from deforestation, a major problem in the Philippines and other tropical regions. That vulnerability concerns scientists because the animals are a key part of the Philippines' rich biodiversity.

And when it comes to biodiversity, Steppan said not even famous island chains such as the Galapagos Islands can trump the Philippines –– which, relative to its size, encompasses the Earth's greatest concentration of unique species of animals.

In fact, he believes there's no end to the discoveries that await biologists there.

In the past decade alone, colleagues of Steppan's have identified a total of 10 newfound mammal species in the Philippines, while other scientists have described five more.

Soon the list may grow even longer. Steppan recently led new DNA studies that have produced promising, though not-yet-published, results.

In addition to Steppan of Florida State, co-authors of the current Fieldiana paper include project leader Lawrence Heaney of the Field Museum and researchers from the University of the Philippines; the Philippine National Museum; Conservation International-Philippines; and the Utah Museum of Natural History.

A Florida State University undergraduate researcher also played a significant role. Steppan credits then-FSU student Lawren VandeVrede for much of the Apomys DNA sequencing performed in his laboratory. VandeVrede is now pursuing both a medical and a doctoral degree at the University of Illinois-Chicago.

Visit the FSU Department of Biological Science website (http://www.bio.fsu.edu/steppan/) to learn more about Steppan's research.

Associate Prof Scott J. Steppan | EurekAlert!
Further information:
http://www.fsu.edu

Further reports about: DNA DNA sequencing FSU Luzon Island genetic code mammal species

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>