Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA Computation Gets Logical at the Weizmann Institute of Science

03.08.2009
The world's smallest computers, made of DNA and other biological molecules, just got more "user friendly" thanks to research at the Weizmann Institute of Science.

Biomolecular computers, made of DNA and other biological molecules, only exist today in a few specialized labs, remote from the regular computer user. Nonetheless, Tom Ran and Shai Kaplan, research students in the lab of Prof. Ehud Shapiro of the Weizmann Institute's Biological Chemistry, and Computer Science and Applied Mathematics Departments have found a way to make these microscopic computing devices 'user friendly,' even while performing complex computations and answering complicated queries.

Shapiro and his team at Weizmann introduced the first autonomous programmable DNA computing device in 2001. So small that a trillion fit in a drop of water, that device was able to perform such simple calculations as checking a list of 0s and 1s to determine if there was an even number of 1s. A newer version of the device, created in 2004, detected cancer in a test tube and released a molecule to destroy it. Besides the tantalizing possibility that such biology-based devices could one day be injected into the body - a sort of 'doctor in a cell' locating disease and preventing its spread - biomolecular computers could conceivably perform millions of calculations in parallel.

Now, Shapiro and his team, in a paper published online today in Nature Nanotechnology, have devised an advanced program for biomolecular computers that enables them to 'think' logically. The train of deduction used by this futuristic device is remarkably familiar. It was first proposed by Aristotle over 2000 years ago as a simple if...then proposition: 'All men are mortal. Socrates is a man. Therefore, Socrates is mortal.' When fed a rule (All men are mortal) and a fact (Socrates is a man), the computer answered the question 'Is Socrates Mortal?' correctly. The team went on to set up more complicated queries involving multiple rules and facts, and the DNA computing devices were able to deduce the correct answers every time.

At the same time, the team created a compiler - a program for bridging between a high-level computer programming language and DNA computing code. Upon compiling, the query could be typed in something like this: Mortal(Socrates)?. To compute the answer, various strands of DNA representing the rules, facts and queries were assembled by a robotic system and searched for a fit in a hierarchical process. The answer was encoded in a flash of green light: Some of the strands had a biological version of a flashlight signal - they were equipped with a naturally glowing fluorescent molecule bound to a second protein which keeps the light covered. A specialized enzyme, attracted to the site of the correct answer, removed the 'cover' and let the light shine. The tiny water drops containing the biomolecular data-bases were able to answer very intricate queries, and they lit up in a combination of colors representing the complex answers.

Prof. Ehud Shapiro's research is supported by the Clore Center for Biological Physics; the Arie and Ida Crown Memorial Charitable Fund; the Phyllis and Joseph Gurwin Fund for Scientific Advancement; Sally Leafman Appelbaum, Scottsdale, AZ; the Carolito Stiftung, Switzerland; the Louis Chor Memorial Trust Fund; and Miel de Botton Aynsley, UK. Prof. Shapiro is the incumbent of the Harry Weinrebe Chair of Computer Science and Biology.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il
http://www.eurekalert.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>