Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA Caught Rock 'N Rollin'

01.02.2011
DNA, that marvelous, twisty molecule of life, has an alter ego, research at the University of Michigan and the University of California, Irvine reveals.

On rare occasions, its building blocks "rock and roll," deforming the familiar double helix into a different shape.

"We show that the simple DNA double helix exists in an alternative form---for one percent of the time---and that this alternative form is functional," said Hashim M. Al-Hashimi, who is the Robert L. Kuczkowski Professor of Chemistry and Professor of Biophysics at U-M. "Together, these data suggest that there are multiple layers of information stored in the genetic code." The findings were published online Jan. 26 in the journal Nature.

It's been known for some time that the DNA molecule can bend and flex, something like a rope ladder, but throughout these gyrations its building blocks---called bases---remain paired up just the way they were originally described by James Watson and Francis Crick, who proposed the spiral-staircase structure in 1953. By adapting nuclear magnetic resonance (NMR) technology, Al-Hashimi's group was able to observe transient, alternative forms in which some steps on the stairway come apart and reassemble into stable structures other than the typical Watson-Crick base pairs.

The question was, what were these alternative stable structures?

"Using NMR, we were able to access the chemical shifts of this alternative form," said graduate student Evgenia Nikolova. "These chemical shifts are like fingerprints that tell us something about the structure." Through careful analysis, Nikolova realized the "fingerprints" were typical of an orientation in which certain bases are flipped 180 degrees.

"It's like taking half of the stairway step and flipping it upside down so that the other face now points up," said Al-Hashimi. "If you do this, you can still put the two halves of the step back together, but now what you have is no longer a Watson-Crick base pair; it's something called a Hoogsteen base pair."

"Using computational modeling, we further validated that individual bases can roll over inside the double helix to achieve these Hoogsteen base pairs," said Ioan Andricioaei, an associate professor of chemistry at the University of California, Irvine.

Hoogsteen base pairs have previously been observed in double-stranded DNA, but only when the molecule is bound to proteins or drugs or when the DNA is damaged. The new study shows that even under normal circumstances, with no outside influence, certain sections of DNA tend to briefly morph into the alternative structure, called an "excited state."

Previous studies of DNA structure have relied mainly on techniques such as X-ray and conventional NMR, which can't detect such fleeting or rare structural changes.

"These methods do not capture alternative DNA structural forms that may exist for only a millisecond or in very little abundance, such as one percent of the time," said Al-Hashimi. "We took new solution NMR methods that previously have been used to study rare deformations in proteins and adapted them so that they could be used to study rare states in nucleic acids. Now that we have the right tools to look at these so-called excited states, we may find other short-lived states in DNA and RNA."

Because critical interactions between DNA and proteins are thought to be directed by both the sequence of bases and the flexing of the molecule, these excited states represent a whole new level of information contained in the genetic code, Al-Hashimi said.

In addition to Al-Hashimi, Nikolova and Andricioaei, the paper's authors are undergraduate student Abigail Wise and assistant professor of biological chemistry Patrick O'Brien of U-M and postdoctoral researcher Eunae Kim of the University of California, Irvine.

The researchers received funding from the National Science Foundation, the National Institutes of Health and the University of Michigan.

More information:

Hashim Al-Hashimi: https://www.chem.lsa.umich.edu/chem/faculty/facultyDetail.php?Uniqname=hashimi

Nature: http://www.nature.com/

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>