Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA catalysts do the work of protein enzymes

19.03.2013
Illinois chemists have used DNA to do a protein’s job, creating opportunities for DNA to find work in more areas of biology, chemistry and medicine than ever before.

Led by Scott Silverman, a professor of chemistry at the University of Illinois at Urbana-Champaign, the researchers published their findings in the journal Proceedings of the National Academy of Sciences.

Ideally, researchers would like to be able to design and build new catalysts from scratch that can do exactly what they want. Many enzymes make small modifications to the building blocks of proteins, amino acids, which can create large changes in a finished protein. However, designing – or even modifying – protein enzymes is a very difficult task, thanks to their complexity and size.

“Protein enzymes are the workhorses of biology,” Silverman said. “They do most of the catalytic activity. Our idea to use another kind of catalyst, artificial DNA sequences, to modify the side chains on proteins, which therefore affects their biological function.”

One of the most important – and difficult – reactions in nature is the addition or removal of a phosphate group. In the realm of proteins, the amino acids serine and tyrosine can have phosphate added to or removed from them, which can alter the protein’s function or turn enzyme activity on or off. Without help from catalysts, such reactions take a very long time to occur – on the order of thousands to millions of years. So nature uses enzymes called kinases or phosphatases to catalyze these reactions.

Silverman’s group identified artificial DNA catalysts that can do phosphatase’s job of removing phosphate from serine and tyrosine. Demonstrating that DNA can catalyze such difficult reactions is an important step forward in designing and using DNA catalysts.

“At this point, this is basic science. We’re trying to figure out, what kind of reactions can DNA catalyze? And how do we find DNA catalysts that can catalyze these reactions?” Silverman said.

To find the DNA catalysts that can perform a phosphatase reaction, the researchers used a process called in vitro selection. This method searches through vast numbers of DNA sequences to identify the few that could perform a specific activity. The researchers then synthesize those DNA strands and use them for various applications.

“We believe that DNA catalysts can be a very useful tool in the future to study these kinds of protein modifications,” said graduate student and co-author Jagadeeswaran Chandrasekar. “To have DNA that you can synthesize on a machine and do catalytic activity on large molecules like proteins is very exciting. We can make fresh new DNA sequences, without requiring a natural starting point, and perform important reactions.”

The researchers tested their DNA catalysts’ activity in the presence of other large, non-specific proteins, to find out if they would function in an environment resembling the cell. The DNA catalysts were not bothered by the extra company, giving the researchers hope that one day their DNA catalysts could be used for practical applications in vivo.

Next, the researchers will continue to refine the in vitro selection process and hope to identify more DNA catalysts, designing and building molecules to perform specific functions.

“This kind of finding is enabling because it shows that DNA catalysis of biologically interesting processes is possible,” Silverman said, “and with this outcome we can have confidence that the broader objectives of this kind of research are likely to be achievable.”

The National Institutes of Health, the Defense Threat Reduction Agency and the National Science Foundation supported this work. Silverman also is a professor of biochemistry and biophysics at the U. of I.

Editor’s notes:
To reach Scott Silverman, call 217-244-4489; email sks@illinois.edu.
The paper, “Catalytic DNA with phosphatase activity,” will be available
on PNAS Early Edition this week.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>