Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA barcoding of parasitic worms: Is it kosher?

15.02.2012
Museum Scientists help Orthodox Union analyze nematodes in canned sardines, capelin eggs

When rabbis from the Orthodox Union started finding worms in cans of sardines and capelin eggs, they turned to scientists at the American Museum of Natural History to answer a culturally significant dietary question: could these foods still be considered kosher?

Using a technique called "DNA barcoding" at the Museum's Sackler Institute for Comparative Genomics, researchers identified the species and life cycles of the parasitic worms to determine whether the food's preparation violated Jewish dietary laws. The results, which were recently published online in the Journal of Parasitology, show that although the food contains a handful of species of roundworms, it is kosher.

"About 75 percent of all pre-packaged food has a kosher certification," said Mark Siddall, a curator in the Museum's Division of Invertebrate Zoology. "Many people, not just those in the Jewish community, look for this certification as a symbol of quality assurance in food preparation. If you're a food provider and you lose that certification, you're going to take a large hit."

The study began last March, when rabbinical experts from the Orthodox Union, the largest organization that certifies food products for the Jewish community, brought a variety of kosher-certified sardines and capelin eggs to the Museum. Their concern: the presence of the worms might be a sign that intestinal contents were allowed to mix with sardine meat or preserved capelin eggs during food preparation. If that were the case, kosher certification would be compromised.

The key to determining whether the canned food was improperly handled is in the worms' life cycles, Siddall said. "Some species of worms live in the muscles of fish when they're in the larval stage," he said. "Other species live in the fish's intestines when they're adults. We already know the life cycles for these parasites, so all we have to do is figure out what species were present in the canned food."

To do this, researchers used genetic barcoding, a technology based on a relatively short region of a gene in the mitochondrion, an energy-producing structure located outside of the cell's nucleus, that allows researchers to efficiently identify the species from which a piece of meat—or even a leather handbag—came from.

Work by Museum scientists has long included and promoted this technique, which has identified the presence of endangered whales in Asian markets, documented fraud in the labeling of tuna, and determined the species of animals on sale in African bushmeat markets. In this case, the scientists identified a handful of different nematode species, none of which are known to live in the guts of fish during their lifecycles—therefore, there's no evidence of intestinal worms co-mingling with the fish meat or eggs.

As a result, the Orthodox Union issued a decision that the food remains kosher.

"To our knowledge, this is the first application of DNA barcoding to an obviously cultural concern," said Sebastian Kvist, one of the paper's authors and a student in the Museum's Richard Gilder Graduate School. "This paper really exemplifies what science is all about—helping people."

Other authors include Anna Phillips, from the University of Connecticut, and Alejandro Oceguera-Figuero, from the National Autonomous University of Mexico.

Funding for the Museum's DNA Barcoding Initiative is provided by the Alfred P. Sloan Foundation and the Richard Lounsbery Foundation.

Kendra Snyder | EurekAlert!
Further information:
http://www.amnh.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>