Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA of ancient lost barley could help modern crops cope with water stress

23.07.2009
Researchers at the University of Warwick have recovered significant DNA information from a lost form of ancient barley that triumphed for over 3000 years seeing off: 5 changes in civilisation, water shortages and a much more popular form of barley that produces more grains. This discovery offers a real insight into the couture of ancient farming and could assist the development of new varieties of crops to face today's climate change challenges.

The researchers, led by Dr Robin Allaby from the University of Warwick's plant research arm Warwick HRI, examined Archaeobotanical remains of ancient barley at Qasr Ibrim in Egypt's Upper Nile. This is a site that was occupied for over 3000 years by 5 successive cultures: Napatan, Roman, Meoitic, Christian and Islamic.

The first surprise for the researchers was that throughout that period every culture seemed to be growing a two rowed form of barley. While natural wild barley tends to be two rowed most farmers prefer to grow a much higher yield 6 row version which produces up to 3 times as many grains. That 6 row version has grown for over 8000 years and that was certainly grown in the lower Nile over the same period as Qasr Ibrim was occupied. It was thought that despite the fact that the rest of Egypt used 6 row barley that the farmers of Qasr Ibrim were perhaps deliberately choosing to import 2 rowed barley but the researchers could not understand why that would be so.

The plant scientists were pleased to find that the very dry conditions at Qasr Ibrim meant that they were able to extract a great deal of DNA information from barley samples from the site that dated back 2900 years. This was far better than would normally be expected from barley samples of that age. This led to the researchers to a second and much bigger surprise. They found that the DNA evidence showed that the two rowed barley at the site wasn't the normal wild two eared barley but a mutation of the more normally cultivated six rowed barley that had changed into a two ear form that had continued to be cultivated for around three millennia.

Dr Robin Allaby said:

"The consistency of the two-row phenotype throughout all the strata spanning three millennia indicates that the reason for the reappearance of the two row form is more likely to be genetic, not environmental. Consequently, the two-row condition has probably resulted from a gain of a function mutation at another point in the plants DNA that has also reasserted the two-row condition from a six-row ancestor"

"There may have been a natural selection pressure that strongly favoured the two-row condition. One such possible cause we are currently investigating is water stress. Qasr Ibrim is located in the upper Nile which is very arid relative to the lower Nile where six-row remains are found, and studies have shown that two-row can survive water stress better than six-row"

He concluded that:

"This finding has two important implications. Such strong selection pressure is likely to have affected many genes in terms of adaptation. Archaeogenetic study of the DNA of such previously lost ancient crops could confirm the nature of the selection pressure and be very valuable in the development of new varieties of crops to help with today's climate change challenges. Secondly this crop's rediscovery adds to our respect for the methods and thinking of ancient farmers. These ancient cultures utilized crops best suited to their environmental situation for centuries, rather than the much more popular six rowed barley they used a successful low grain number yield crop which could cope far better with water stress."

The research paper entitled "Archaeogenetic Evidence of Ancient Nubian Barley Evolution from Six to Two-Row Indicates Local Adaptation" has just been published in PLoS One. The papers authors are: by Dr Robin Allaby, Sarah A. Palmer and Jonathan D. Moore from the University of Warwick's plant research arm Warwick HRI; Alan J. Clapham from Worcestershire Historic Environment & Archaeology Service at the University of Worcester; and Pamela Rose fromThe McDonald Institute for Archaeological Research, University of Cambridge.

For further information contact: Dr Sharon Hall, Communications Office
Warwick HRI, University of Warwick
sharon.hall@warwick.ac.uk
Tel: +44 (0)2476 575254 (Direct line)

Sharon Hall | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>