Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Division of Labor in the Test Tube

02.12.2013
Bacteria grow faster if they feed each other.

The division of labor is more efficient than a struggle through life without help from others – this is also true for microorganisms.


Bacteria that divide their metabolic labor (left colony) grow faster than bacterial cells that produce all amino acids on their own (right colony).

S. Pande / MPI for Chemical Ecology

Researchers from Research Group Experimental Ecology and Evolution at the Max Planck Institute for Chemical Ecology and their colleagues at the Friedrich Schiller University in Jena, Germany came to this conclusion when they performed experiments with microbes.

The scientists worked with bacteria that were deficient in the production of a certain amino acid and therefore depended on a partner to provide the missing nutrient. Bacterial strains that complemented each other’s need by providing the required amino acid showed a fitness increase of about 20% relative to a non-deficient strain without partner.

This result helps to explain why cooperation is such a widespread model of success in nature. (The ISME Journal, 28 November 2013, DOI: 10.1038/ismej.2013.211)

Ecology and evolution: close relatives

Each life form on our planet has to adapt to its environment as good as it can. Apart from getting used to climate conditions and food supply, each species must get along with other organisms in the habitat. In the course of evolution species adapt continuously to each other and to the environment by changing their genetic features. This is why cold resistant species live at the poles and heat resistant species in the deserts. Also nutritional needs and metabolic regulation underlie the principle of evolution. So let’s take a look at the world of microbes in this context!

Microbial communities

“No matter where you look: Microbial communities can be found in almost every habitat you can think of,” says Christian Kost, leader of the research group “Experimental Ecology and Evolution” at the Max Planck Institute for Chemical Ecology in Jena, Germany. Microbes often live in symbiosis with higher organisms, but they also cooperate with each other in order to optimally utilize the resources that are available to them. Interestingly, a look at the genome of cooperating bacterial strains shows that some of them are unable to perform all vital metabolic functions on their own. Instead, they rely on their cooperative partner. Their environment, that is to say other organisms, provides the nutrients they cannot produce themselves anymore. However, the result of the cooperation is a risky dependency: If one partner is lost, the other dies as well. Can such a dependency in fact be a trait that is selected for and which is maintained for a longer period in a bacterial population? Is this assumption compatible with Darwin’s theory of the “survival of the fittest”? If so, cooperating partners should perform as good or even better than microbes without partner in terms of fitness.

Synthetic Ecology: simulating ecological parameters in a test tube

To bring a naturally evolved symbiotic community from the real world into the lab to study such cooperation, is often very difficult. Therefore, scientists used a synthetic model: Escherichia coli bacteria were genetically modified in such a way that one bacterial strain was unable to produce a certain amino acid anymore, such as tryptophan, but produced all other amino acids in high concentrations. If this strain grows in a culture with another strain unable to produce arginine, another amino acid, both strains are able to feed each other. Amazingly, such co-culture experiments showed that the growth of these bacterial cells was increased by 20% in comparison to the unmodified wild-type strain that was able to produce all essential amino acid by itself. The inability of the deficient strain to produce an essential amino acid had a positive effect on its growth when a partner was present that compensated this loss. This can be explained by the considerably reduced energy costs both strains had to invest for producing the exchanged amino acids. Specializing on the production of certain, but not all necessary amino acids made the bacterial cells more efficient and thus resulted in faster growth. Interestingly, the two cooperating, amino acid exchanging strains even outcompeted a self-sustaining wild-type strain.

The research results from Christian Kost’s lab illustrate why symbiotic relationships with bacteria are so prevalent. In the course of evolution, an association may get so close that the mutualistic partners merge into a new, multicellular organism.

The research project was funded by the Volkswagen Foundation, the Jena School for Microbial Communication, the Fundação Calouste Gulbenkian and the Fundação para a Ciência e a Tecnologia as well as Siemens SA Portugal. [JWK/AO]

Original Publication:
Pande, S., Merker, H., Bohl, K., Reichelt, M., Schuster, S., de Figueiredo, L., Kaleta, C., Kost, C. (2013). Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. The ISME Journal. Advance online publication 28 November 2013; doi: 10.1038/ismej.2013.211

http://dx.doi.org/10.1038/ismej.2013.211

Further Information:
Dr. Christian Kost, +49 3641 57-1212, ckost@ice.mpg.de
Contact and picture requests:
Angela Overmeyer M.A., MPI for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, + 49 3641 57-2110, overmeyer@ice.mpg.de

Download of high resolution pictures on http://www.ice.mpg.de/ext/735.html

Angela Overmeyer | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/1051.html?&L=0

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>