Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Division of Labor in the Test Tube

02.12.2013
Bacteria grow faster if they feed each other.

The division of labor is more efficient than a struggle through life without help from others – this is also true for microorganisms.


Bacteria that divide their metabolic labor (left colony) grow faster than bacterial cells that produce all amino acids on their own (right colony).

S. Pande / MPI for Chemical Ecology

Researchers from Research Group Experimental Ecology and Evolution at the Max Planck Institute for Chemical Ecology and their colleagues at the Friedrich Schiller University in Jena, Germany came to this conclusion when they performed experiments with microbes.

The scientists worked with bacteria that were deficient in the production of a certain amino acid and therefore depended on a partner to provide the missing nutrient. Bacterial strains that complemented each other’s need by providing the required amino acid showed a fitness increase of about 20% relative to a non-deficient strain without partner.

This result helps to explain why cooperation is such a widespread model of success in nature. (The ISME Journal, 28 November 2013, DOI: 10.1038/ismej.2013.211)

Ecology and evolution: close relatives

Each life form on our planet has to adapt to its environment as good as it can. Apart from getting used to climate conditions and food supply, each species must get along with other organisms in the habitat. In the course of evolution species adapt continuously to each other and to the environment by changing their genetic features. This is why cold resistant species live at the poles and heat resistant species in the deserts. Also nutritional needs and metabolic regulation underlie the principle of evolution. So let’s take a look at the world of microbes in this context!

Microbial communities

“No matter where you look: Microbial communities can be found in almost every habitat you can think of,” says Christian Kost, leader of the research group “Experimental Ecology and Evolution” at the Max Planck Institute for Chemical Ecology in Jena, Germany. Microbes often live in symbiosis with higher organisms, but they also cooperate with each other in order to optimally utilize the resources that are available to them. Interestingly, a look at the genome of cooperating bacterial strains shows that some of them are unable to perform all vital metabolic functions on their own. Instead, they rely on their cooperative partner. Their environment, that is to say other organisms, provides the nutrients they cannot produce themselves anymore. However, the result of the cooperation is a risky dependency: If one partner is lost, the other dies as well. Can such a dependency in fact be a trait that is selected for and which is maintained for a longer period in a bacterial population? Is this assumption compatible with Darwin’s theory of the “survival of the fittest”? If so, cooperating partners should perform as good or even better than microbes without partner in terms of fitness.

Synthetic Ecology: simulating ecological parameters in a test tube

To bring a naturally evolved symbiotic community from the real world into the lab to study such cooperation, is often very difficult. Therefore, scientists used a synthetic model: Escherichia coli bacteria were genetically modified in such a way that one bacterial strain was unable to produce a certain amino acid anymore, such as tryptophan, but produced all other amino acids in high concentrations. If this strain grows in a culture with another strain unable to produce arginine, another amino acid, both strains are able to feed each other. Amazingly, such co-culture experiments showed that the growth of these bacterial cells was increased by 20% in comparison to the unmodified wild-type strain that was able to produce all essential amino acid by itself. The inability of the deficient strain to produce an essential amino acid had a positive effect on its growth when a partner was present that compensated this loss. This can be explained by the considerably reduced energy costs both strains had to invest for producing the exchanged amino acids. Specializing on the production of certain, but not all necessary amino acids made the bacterial cells more efficient and thus resulted in faster growth. Interestingly, the two cooperating, amino acid exchanging strains even outcompeted a self-sustaining wild-type strain.

The research results from Christian Kost’s lab illustrate why symbiotic relationships with bacteria are so prevalent. In the course of evolution, an association may get so close that the mutualistic partners merge into a new, multicellular organism.

The research project was funded by the Volkswagen Foundation, the Jena School for Microbial Communication, the Fundação Calouste Gulbenkian and the Fundação para a Ciência e a Tecnologia as well as Siemens SA Portugal. [JWK/AO]

Original Publication:
Pande, S., Merker, H., Bohl, K., Reichelt, M., Schuster, S., de Figueiredo, L., Kaleta, C., Kost, C. (2013). Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. The ISME Journal. Advance online publication 28 November 2013; doi: 10.1038/ismej.2013.211

http://dx.doi.org/10.1038/ismej.2013.211

Further Information:
Dr. Christian Kost, +49 3641 57-1212, ckost@ice.mpg.de
Contact and picture requests:
Angela Overmeyer M.A., MPI for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, + 49 3641 57-2110, overmeyer@ice.mpg.de

Download of high resolution pictures on http://www.ice.mpg.de/ext/735.html

Angela Overmeyer | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/1051.html?&L=0

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

LZH showcases laser material processing of tomorrow at the LASYS 2018

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>