Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diving seabirds: Working hard and living long

02.07.2012
Scientists have found that diving birds reach their 30s and then die quickly and suddenly, showing few signs of aging prior to death. Their findings, which will be presented at the Society for Experimental Biology meeting in Salzburg on 2nd July could help us understand the aging process, providing critical insights for our aging population.

The guillemots – which look similar to penguins but can fly – have the highest flight costs of any bird and expend substantial energy for diving. Their high metabolisms and frequent dives should produce oxidative stress, causing the birds to deteriorate as they age. But, the researchers discovered that the birds stay fit and active as they grow older, maintaining their flying, diving, and foraging abilities.


Brünnich's guillemots have the highest flight costs of any bird. Credit: Kyle Elliott

Kyle Elliott, a PhD student at the University of Manitoba and the study's lead author, said, "Most of what we know about aging is from studies of short-lived round worms, fruit flies, mice, and chickens, but long-lived animals age differently. We need data from long-lived animals, and one good example is long-lived seabirds."

Elliott also said, "Not only do these birds live very long, but they maintain their energetic lifestyle in a very extreme environment into old age."

One bird, nicknamed 'Wayne Gretzky' by the researchers (after the Canadian hockey great who played 20 seasons and because the bird's identification band colours matched Gretzky's team colours), raised young for 18 consecutive years.

Over 4 consecutive summers, researchers periodically tracked Brünnich's guillemots' fitness, recording how deep and for how long they would dive for prey, how far and fast they would fly, and how much energy they expended on these activities. They looked for changes in the birds' behaviour and metabolism.

Catie Lichten | EurekAlert!
Further information:
http://www.sebiology.org/

Further reports about: Penguins Wayne Gretzky foraging abilities guillemots

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>