Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diving Deeper into the Gene Pool

28.09.2010
TAU develops innovative software to analyze and manipulate diseased cells

About ten years ago, the discovery of microRNAs — tiny cellular molecules that regulate our genetic code — unlocked a world of scientific possibilities, including a deeper understanding of human disease.

One new analytical technology is "deep sequencing," which gives scientists the ability to discover invaluable information about human diseases at a genetic level. Now, Tel Aviv University researchers have developed the cutting-edge technology to better analyze these results.

The software, called miRNAkey, was developed by Roy Ronen as part of a team of researchers headed by Dr. Noam Shomron of the Sackler Faculty of Medicine. Dr. Shomron says that miRNAkey searches for microRNA patterns in both healthy and diseased tissues, improving scientists’ understanding of the data collected from deep sequencing technology.

The software package was recently described in the journal Bioinformatics.

Making sense of microRNA patterns

Deep sequencing is used to determine the ultimate sequence and expression of cellular DNA or RNA. Once these molecules are extracted, scientists must be able to read the valuable information that the data supplies. Among these are the entire human genome sequence, the expression of the genes from the genome, and the molecules, such as microRNA, which regulate genetic expression. In short, it allows biologists to see further into human genetics and determine where and when genetic malfunctions might occur.

Until now there were very few unified codes that could interpret what information the microRNA held, and none that could run on a local computer or explain ambiguous microRNA behaviors. The solution is the miRNAkey program, says Dr. Shomron. It is designed to identify the relevant microRNA molecule, determine its level, then generate statistically valuable information from it.

"Such identification of microRNAs allows us to manipulate them," Dr. Shomron explains. One example of this potential manipulation is the alteration of malignant tumors. In one study Dr. Shomron and his team of researchers were able to identify the relevant microRNA molecules in an aggressive malignant form of cancer. They then inserted the healthy, non-aggressive form of these microRNAs into the diseased, aggressive molecule. In an animal model, this resulted in a significant slowing of tumor growth.

Results right to the computer screen

With his software, says Dr. Shomron, data obtained from deep sequencing can be quickly and correctly analyzed, allowing scientists to take a deeper look into disease behavior and potentially build specialized treatments with this knowledge. It may also encourage the creation of "smart drugs" which target individual damaged cells.

With a user-friendly interface, miRNAkey can be used on any local computer alongside the proper deep sequencing technology. Unique features such as data statistics and detailed reports provide valuable information about extracted microRNA, notes Dr. Shomron.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>