Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diving Deeper into the Gene Pool

28.09.2010
TAU develops innovative software to analyze and manipulate diseased cells

About ten years ago, the discovery of microRNAs — tiny cellular molecules that regulate our genetic code — unlocked a world of scientific possibilities, including a deeper understanding of human disease.

One new analytical technology is "deep sequencing," which gives scientists the ability to discover invaluable information about human diseases at a genetic level. Now, Tel Aviv University researchers have developed the cutting-edge technology to better analyze these results.

The software, called miRNAkey, was developed by Roy Ronen as part of a team of researchers headed by Dr. Noam Shomron of the Sackler Faculty of Medicine. Dr. Shomron says that miRNAkey searches for microRNA patterns in both healthy and diseased tissues, improving scientists’ understanding of the data collected from deep sequencing technology.

The software package was recently described in the journal Bioinformatics.

Making sense of microRNA patterns

Deep sequencing is used to determine the ultimate sequence and expression of cellular DNA or RNA. Once these molecules are extracted, scientists must be able to read the valuable information that the data supplies. Among these are the entire human genome sequence, the expression of the genes from the genome, and the molecules, such as microRNA, which regulate genetic expression. In short, it allows biologists to see further into human genetics and determine where and when genetic malfunctions might occur.

Until now there were very few unified codes that could interpret what information the microRNA held, and none that could run on a local computer or explain ambiguous microRNA behaviors. The solution is the miRNAkey program, says Dr. Shomron. It is designed to identify the relevant microRNA molecule, determine its level, then generate statistically valuable information from it.

"Such identification of microRNAs allows us to manipulate them," Dr. Shomron explains. One example of this potential manipulation is the alteration of malignant tumors. In one study Dr. Shomron and his team of researchers were able to identify the relevant microRNA molecules in an aggressive malignant form of cancer. They then inserted the healthy, non-aggressive form of these microRNAs into the diseased, aggressive molecule. In an animal model, this resulted in a significant slowing of tumor growth.

Results right to the computer screen

With his software, says Dr. Shomron, data obtained from deep sequencing can be quickly and correctly analyzed, allowing scientists to take a deeper look into disease behavior and potentially build specialized treatments with this knowledge. It may also encourage the creation of "smart drugs" which target individual damaged cells.

With a user-friendly interface, miRNAkey can be used on any local computer alongside the proper deep sequencing technology. Unique features such as data statistics and detailed reports provide valuable information about extracted microRNA, notes Dr. Shomron.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>