Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversity in Key Environmental Cleanup Microbe Found

02.09.2009
Researchers have completed the first thorough, system-level assessment of the diversity of an environmentally important genus of microbes known as Shewanella. Microbes belonging to that genus frequently participate in bioremediation by confining and cleaning up contaminated areas in the environment.

The team of researchers from the Georgia Institute of Technology, Michigan State University and the Pacific Northwest National Laboratory analyzed the gene sequences, proteins expressed and physiology of 10 strains of Shewanella.

They believe the study results will help researchers choose the best Shewanella strain for bioremediation projects based on each site’s environmental conditions and contaminants.

The findings, which further advance the understanding of the enormous microbial biodiversity that exists on the planet, appear in the early online issue of the journal Proceedings of the National Academy of Sciences. This research was supported by the U.S. Department of Energy through the Shewanella Federation consortium and the Proteomics Application project.

Similar to a human breathing in oxygen and exhaling carbon dioxide, many Shewanella microbes have the ability to “inhale” certain metals and compounds and convert them to an altered state, which is typically much less toxic. This ability makes Shewanella very important for the environment and bioremediation, but selecting the best strain for a particular project has been a challenge.

“If you look at different strains of Shewanella under a microscope or you look at their ribosomal genes, which are routinely used to identify newly isolated strains of bacteria, they look identical. Thus, traditional microbiological approaches would suggest that the physiology and phenotype of these Shewanella bacteria are very similar, if not identical, but that is not true,” explained Kostas Konstantinidis, an assistant professor in the Georgia Tech School of Civil and Environmental Engineering. Konstantinidis, who also holds a joint appointment in the School of Biology, led the research team in analyzing the data.

Using the traditional method for determining interrelatedness between microbial strains -- sequencing of the 16S ribosomal gene -- the researchers determined that the 10 strains belonged to the same genus. However, the technique was unable to distinguish between most of the strains or define general properties that would allow the researchers to differentiate one strain from another. To do that, they turned to genomic and whole-cell proteomic data.

By comparing the 10 Shewanella genomes, which were sequenced at the Department of Energy’s Joint Genome Institute, the research team found that while some of the strains shared 98 percent of the same genes, other strains only shared 70 percent. Out of the almost 10,000 protein-coding genes in the 10 strains, nearly half -- 48 percent -- of the genes were strain-specific, and the differences in expressed proteins were consistently larger than their differences at the gene content level.

“These findings suggest that similarity in gene regulation and expression constitutes an important factor for determining phenotypic similarity or dissimilarity among the very closely related Shewanella genomes,” noted Konstantinidis. “They also indicate that it might be time to start replacing the traditional microbiology approaches for identifying and classifying new species with genomics- or proteomics-based methods.”

Upon further analysis, the researchers found that the genetic differences between strains frequently reflected environmental or ecological adaptation and specialization, which had also substantially altered the global metabolic and regulatory networks in some of the strains. The Shewanella organisms in the study appeared to gain most of their new functions by acquiring groups of genes as mobile genetic islands, selecting islands carrying ecologically important genes and losing ecologically unimportant genes.

The most rapidly changing individual functions in the Shewanellae were related to “breathing” metals and sensing mechanisms, which represent the first line of adaptive response to different environmental conditions. Shewanella bacteria live in environments that range from deep subsurface sandstone to marine sediment and from freshwater to saltwater. All but one of the strains was able to reduce several metals and metalloids. That one exception had undertaken a unique evolution resulting in an inability to exploit strictly anaerobic habitats.

“Let’s say you have a strain of Shewanella that is unable to convert uranium dissolved in contaminated groundwater to a form incapable of dissolving in water,” explained Konstantinidis. “If you put that strain in an environment that contains high concentrations of uranium, that microbe is likely to acquire the genes that accept uranium from a nearby strain, in turn preventing uranium from spreading as the groundwater flows.”

This adaptability of bacteria is remarkable, but requires further study in the bioremediation arena, since it frequently underlies the emergence of new bacterial strains. Konstantinidis’ team at Georgia Tech is currently investigating communities of these Shewanella strains in their natural environments to advance understanding of the influence of the environment on the evolution of the bacterial genome and identify the key genes in the genome that respond to specific environmental stimuli or conditions, such as the presence of heavy metals.

Ongoing studies should broaden the researchers’ understanding of the relationship between genotype, phenotype, environment and evolution, he said.

Abby Vogel | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>