Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissecting the genomes of crop plants to improve breeding potential

01.08.2011
Scientists on the Norwich Research Park, working with colleagues in China, have developed new techniques that will aid the application of genomics to breeding the improved varieties of crop needed to ensure food security in the future. By dissecting the complicated genome of oilseed rape they have been able to produce maps of the genome that are needed for predictive breeding.

Traditional breeding involves crossing two varieties and selecting the best performing among the progeny. Predictive breeding is a more advanced technique where specific parts of the genome most likely to contain beneficial genes are identified.

Genomic sequencing and the availability of genetic linkage maps can play a major part in predictive breeding efforts by linking beneficial traits to specific parts of the genome. Researchers and breeders use genetic markers to construct linkage maps, which help to identify useful genes. They are also vital to marker-assisted crop breeding, where the maps and markers can greatly accelerate the breeding in of new improved traits.

However, for key crops such as bread wheat and oilseed rape, the use of this kind of genomics-based predictive crop breeding is severely hampered due to the complicated genomes that these species possess. Many important crop plants are polyploid, possessing several sets of chromosomes. Bread wheat, for example, contains three pairs of chromosomes derived from multiple hybridisation events that occurred between two other wheat species relatively recently in its ancestry. To try to overcome this problem, a team from the John Innes Centre and The Genome Analysis Centre (TGAC), which are strategically supported by the BBSRC, combined sequence data from different sources to construct genetic linkage maps.

The team led by Professor Ian Bancroft worked on oilseed rape, which as well as being an important oil crop also plays a key role in crop rotation strategies. Its oil has industrial applications and its straw can be used for biofuel production. Like bread wheat, oilseed rape (Brassica napus) has a complicated genome, having recently been formed from related species Brassica rapa and Brassica oleracea.

The strategy adopted by the group involves integrating the available sequence data for oilseed rape with that of its ancestral progenitors, and also that of a more distantly-related species for which high-quality genome sequence data is available, in this case the model plant Arabidopsis thaliana.

Instead of trying to sequence the DNA, the team focussed on the RNA transcribed from the DNA when the genetic code is expressed. The complete set of all of this transcribed RNA is known as the transcriptome.

TGAC used the Illumina GAII platform for the study, producing a series of consistently high quality sequence datasets from expressed genes.

The team analysed the transcriptome in juvenile leaves, which gives an overview of all of the genes that are expressed in that tissue. Using the sequence variation the researchers were able to construct genetic linkage maps in oilseed rape, eventually identifying over 23,000 markers. This allowed them to align the oilseed rape genome with that of Arabidopsis thaliana and also to sequence data from oilseed rape's two progenitor species.

This method of dissecting the genome of polyploid crops is likely to be equally applicable to other important crops. Bread wheat is a prime candidate for this, using the model grass Brachypodium distachyon in the place of Arabidopsis.

"Dissecting the genome of oilseed rape like this opens up the possibility of using predictive breeding techniques that will really help with the production of improved varieties" said Prof. Bancroft.

This study was published in Nature Biotechnology and funded by the BBSRC, the Department for Environment, Food and Rural Affairs and the China National Basic Research and Development Program.

Andrew Chapple | EurekAlert!
Further information:
http://www.nbi.ac.uk

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>