Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diseases of the Brain: Computer Model of Nerve Cells Provides Insights into Communication Problems

14.11.2014

In diseases of the brain, such as Alzheimer’s and Parkinson’s, the neurons fail to communicate correctly with each other. As Bonn-based researchers of the German Center for Neurodegenerative Diseases (DZNE) now report in the journal “Neuron“, these connectivity problems can be ascribed to alterations in the structure of the nerve cells.

For their study, the scientists investigated diseased nerve cells using high precision methods and subsequently simulated their electrical properties on the computer. In their view, medical interventions that preserve the structural integrity of neurons may constitute an innovative strategy for the treatment of neurodegenerative diseases.

Inside the brain, the nerve cells, which are also called “neurons,” are woven into a network in which they relay signals to one another. Thus, neurons form intricate projections that enable them to transmit electrical stimuli and synchronize their activity.

“However, in Alzheimer’s, Parkinson’s and in other diseases of the brain, the nerve cells tend to atrophy. This is a typical symptom of neurodegenerative processes,” explains Professor Stefan Remy, who leads a research group at the Bonn site of the DZNE and also works for the Department of Epileptology at the University Hospital Bonn. “In general, diseased cells have smaller as well as fewer extensions than healthy cells.”

Troubles in Communication

It is also known that the signal transmission between neurons is disturbed. The nerve cells are hyper-excitable. As a result, they fire electrical impulses in a succession that could best be described as hectic. “This activity is somewhat reminiscent of epileptic activity. However, to date it was unclear how changes in cell morphology and abnormal function are related,” remarks Remy.

“We have now found that if the form changes, this has a direct impact on the cell’s electrical properties. It’s just like in an electrical power cord. A thin cord that is also short has different electrical properties than a cord that’s thick and longer. We were able to show that the hyper-excitability can be explained by changes in the structure of the neurons.”

The neuroscientist emphasizes that this finding does not rule out other factors, such as alterations in cell metabolism. “However, our results demonstrate that the dysfunctions and the shape of the neurons are closely connected. Up until now we were not aware of this relationship.”

Precise Measurements and Computer Simulations

For their study, the scientists combined experimental research with computer simulations. At first, they examined the electrical activities of individual neurons as well as those of larger cell groups. For this purpose, they studied mice, whose brains exhibited Alzheimer-typical hallmarks.

Furthermore, using high-precision microscope techniques, the scientists determined the dimensions of healthy and diseased nerve cells. Based upon this structural data, Remy’s team created a three-dimensional model of a single neuron and computed its electrical properties. In this way the researchers were able to relate cellular dysfunction to changes in cell morphology.

A General Effect

“Our study focused on Alzheimer’s. However, alterations in cell morphology are typical for all neurodegenerative diseases. Hence, we assume that the dysfunctions in cellular communication that manifest in other brain diseases are also resulting from structural changes. We think that this is a general effect shared by different diseases.”

In the opinion of the Bonn-based researcher, these findings cast a new light on pathological hallmarks. On the other hand, they could possibly also help with options for treatment. “Our results indicate that if one protects the structure of nerve cells, one also protects their functions. Pharmaceuticals aiming specifically at safeguarding the shape of neurons could potentially have a positive impact on disease progression. Cell morphology would be a novel approach for therapy,” says Remy.

“Moreover, our computer model might prove helpful in studying the effects of these treatment options and in predicting their outcome.”

Original publication
“Dendritic Structural Degeneration is Functionally Linked to Cellular Hyperexcitability in a Mouse Model of Alzheimer’s Disease”, Zuzana Šišková, Daniel Justus, Hiroshi Kaneko, Detlef Friedrichs, Niklas Henneberg, Tatjana Beutel, Julika Pitsch, Susanne Schoch, Albert Becker, Heinz von der Kammer, Stefan Remy, Neuron, 2014, doi: 10.1016/j.neuron.2014.10.024


Weitere Informationen:

https://www.dzne.de/en/about-us/public-relations/meldungen/2014/press-release-no-15.html

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>