Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diseases of the Brain: Computer Model of Nerve Cells Provides Insights into Communication Problems

14.11.2014

In diseases of the brain, such as Alzheimer’s and Parkinson’s, the neurons fail to communicate correctly with each other. As Bonn-based researchers of the German Center for Neurodegenerative Diseases (DZNE) now report in the journal “Neuron“, these connectivity problems can be ascribed to alterations in the structure of the nerve cells.

For their study, the scientists investigated diseased nerve cells using high precision methods and subsequently simulated their electrical properties on the computer. In their view, medical interventions that preserve the structural integrity of neurons may constitute an innovative strategy for the treatment of neurodegenerative diseases.

Inside the brain, the nerve cells, which are also called “neurons,” are woven into a network in which they relay signals to one another. Thus, neurons form intricate projections that enable them to transmit electrical stimuli and synchronize their activity.

“However, in Alzheimer’s, Parkinson’s and in other diseases of the brain, the nerve cells tend to atrophy. This is a typical symptom of neurodegenerative processes,” explains Professor Stefan Remy, who leads a research group at the Bonn site of the DZNE and also works for the Department of Epileptology at the University Hospital Bonn. “In general, diseased cells have smaller as well as fewer extensions than healthy cells.”

Troubles in Communication

It is also known that the signal transmission between neurons is disturbed. The nerve cells are hyper-excitable. As a result, they fire electrical impulses in a succession that could best be described as hectic. “This activity is somewhat reminiscent of epileptic activity. However, to date it was unclear how changes in cell morphology and abnormal function are related,” remarks Remy.

“We have now found that if the form changes, this has a direct impact on the cell’s electrical properties. It’s just like in an electrical power cord. A thin cord that is also short has different electrical properties than a cord that’s thick and longer. We were able to show that the hyper-excitability can be explained by changes in the structure of the neurons.”

The neuroscientist emphasizes that this finding does not rule out other factors, such as alterations in cell metabolism. “However, our results demonstrate that the dysfunctions and the shape of the neurons are closely connected. Up until now we were not aware of this relationship.”

Precise Measurements and Computer Simulations

For their study, the scientists combined experimental research with computer simulations. At first, they examined the electrical activities of individual neurons as well as those of larger cell groups. For this purpose, they studied mice, whose brains exhibited Alzheimer-typical hallmarks.

Furthermore, using high-precision microscope techniques, the scientists determined the dimensions of healthy and diseased nerve cells. Based upon this structural data, Remy’s team created a three-dimensional model of a single neuron and computed its electrical properties. In this way the researchers were able to relate cellular dysfunction to changes in cell morphology.

A General Effect

“Our study focused on Alzheimer’s. However, alterations in cell morphology are typical for all neurodegenerative diseases. Hence, we assume that the dysfunctions in cellular communication that manifest in other brain diseases are also resulting from structural changes. We think that this is a general effect shared by different diseases.”

In the opinion of the Bonn-based researcher, these findings cast a new light on pathological hallmarks. On the other hand, they could possibly also help with options for treatment. “Our results indicate that if one protects the structure of nerve cells, one also protects their functions. Pharmaceuticals aiming specifically at safeguarding the shape of neurons could potentially have a positive impact on disease progression. Cell morphology would be a novel approach for therapy,” says Remy.

“Moreover, our computer model might prove helpful in studying the effects of these treatment options and in predicting their outcome.”

Original publication
“Dendritic Structural Degeneration is Functionally Linked to Cellular Hyperexcitability in a Mouse Model of Alzheimer’s Disease”, Zuzana Šišková, Daniel Justus, Hiroshi Kaneko, Detlef Friedrichs, Niklas Henneberg, Tatjana Beutel, Julika Pitsch, Susanne Schoch, Albert Becker, Heinz von der Kammer, Stefan Remy, Neuron, 2014, doi: 10.1016/j.neuron.2014.10.024


Weitere Informationen:

https://www.dzne.de/en/about-us/public-relations/meldungen/2014/press-release-no-15.html

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>