Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Same disease, different stem cell models

07.05.2010
Fragile X syndrome iPS cells and embryonic stem cells behave differently

In the last three years, a new technique for reprogramming adult cells has given scientists an easier and less controversial way to harness the power of embryonic-like stem cells to study human disease from its earliest beginnings in hopes of gleaning new insights into the root causes of disease and developing new therapies.

But the reprogrammed cells, known as induced pluripotent stem (iPS) cells, are different from embryonic stem cells in their ability to model a human genetic disease, a new cell-to-cell comparison shows.

"This is the first example where we can clearly show induced pluripotent stem cells and embryonic stem cells behave differently in a disease model," said co-senior author George Daley, Director of the Stem Cell Transplantation Program at Children’s Hospital Boston. Daley's team has turned patient cells back into stem cells for a range of diseases.

In the new study in the May 7 Cell Stem Cell, the researchers made iPS cells from the skin cells of three patients with fragile X syndrome, the most common form of inherited mental retardation in boys. By almost every measure, virtually the entire genome was dialed back in time. The key exception was the disease-causing gene, which becomes inactivated to cause the disease, and did not get turned back on in the iPS cells.

"Both iPS and embryonic stem cell lines have the same mutation," said co-senior author Nissim Benvenisty, director of the Stem Cell Unit at the Hebrew University of Jerusalem, whose lab established an embryonic stem cell model of fragile X syndrome three years ago at a time when such research was severely restricted in the United States. "However, we saw a difference between the two systems."

About one-third of children with fragile X have behavioral symptoms that overlap with autism. Scientists hope a stem cell model of fragile X will help them study what goes wrong and test drugs that may help treat both abnormal conditions.

"It’s known that the fragile X protein regulates the expression of receptors at the synapse between nerve cells," Daley said. "In the absence of the protein, nerve cells express too much of an excitatory receptor."

The mutation that silences the fragile X gene and blocks its protein lies buried just upstream of the gene's coding region in triplet repeats of DNA. Normally, that region harbors up to 50 CGG repeats. Fragile X syndrome occurs when the repeats number more than 200.

The mutation alone is not enough to cause disease. "In rare cases, people can have the full mutation, but the gene is still expressed," said co-first author Achia Urbach, a postdoctoral fellow in the Daley lab at Children's and former graduate student in the Benvenisty lab in Jerusalem.

Three years ago, Urbach, Benvenisty and their Israeli collaborators reported the first direct evidence that the fragile X gene was silenced upon differentiation. The fragile X gene, called FMR1, remains active until cells begin to differentiate in preparation for forming different tissues and organs. Somehow, that process locks down the DNA with epigenetic changes that prevent the gene from being transcribed. To study the FMR1 gene silencing in embryonic stem cells, they established embryos affected by the fragile X condition in collaboration with Lis Maternity Hospital in Tel Aviv. The affected embryos were identified by preimplantation diagnosis, resulting from IVF treatment of a woman who carried the fragile X mutation and wanted healthy babies, Urbach said.

After that paper, Urbach joined the Daley lab to study iPS cells. Beginning with patients' cells, Daley's group has developed more than a dozen disease-specific stem cell lines. "We thought it would be interesting to compare the two systems," said Urbach of the embryonic and induced fragile X stem cells.

Urbach and co-first author Ori Bar-Nur, a graduate student in Benvenisty's lab first created fragile X iPS cells from the skin cells of two affected patients and related lung cells from a 22-week-old fetus with fragile X, testing them extensively to assure themselves and other researchers of their stem-cell qualities. They also investigated why the FMR1 gene remained stubbornly locked down.

"We show the reason the gene is not expressed is because it still has the epigenetic markers for silencing," Urbach said.

The fragile X gene may be one of the first genes to resist the reprogramming process that transforms adult tissue cells into iPS cells, but it's likely not the last, said the researchers.

"This raises a general caution for using iPS as a faithful reflection of a disease process," Daley said. "There are lots of conditions where you have gene defects that lead to gene silencing. Such conditions may not be faithfully modeled by iPS cells. Fragile X is a disease where using embryonic stem cells as a tool is essential."


The differences in the iPS and embryonic fragile X stem cells make them useful for different types of studies, the researchers say. "On one hand, iPS cells are not as good for modeling the inactivation of the gene," Benvenisty said. "On the other hand, they may be a better model for studying neurons lacking expression of the gene."

"New insights into fragile X have stimulated clinical trials of drugs that block the overactive excitatory receptors in nerve cells," Daley said. "Early results hint that these drugs might ameliorate the condition of fragile X. With our stem cell models-diseases in a dish, if you will-we can test whether the drugs will reverse abnormal connections at the synapses that we think are at the basis of this condition. If your goal is blocking FMR1 gene silencing, you're better off working on drug screens in embryonic stem cells than in iPS cells."

CITATION: "Differential modeling of Fragile X syndrome by human embryonic stem cells and induced-pluripotent stem cells," Achia Urbach1*, Ori Bar-Nur2*, George Q. Daley1# and Nissim Benvenisty2# 1. Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute; Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Harvard Stem Cell Institute, Boston, MA 02115, USA. 2. Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.

FUNDING: EMBO, Israel Science Foundation, European Community, Legacy Heritage Fund of New York, National Institutes of Health, Howard Hughes Medical Foundation, Manton Center for Orphan Disease Research.


Contact:
Bess Andrews
617-919-3110
elizabeth.andrews @childrens.harvard.edu
Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 11 members of the Institute of Medicine and 13 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 397-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: www.childrenshospital.org/newsroom.

Bess Andrews | EurekAlert!
Further information:
http://www.childrenshospital.org/newsroom

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>