Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Serious disease in pet lizards caused by new bacteria

22.09.2008
Skin infections are common in pet lizards and can lead to fatal organ disease and septicaemia.

Infections are particularly risky in lizards that are bred in captivity for release into the wild, as they can spread into the wild population. The cause of these diseases has been unclear but now researchers in Belgium have discovered a new bacterium responsible for dermatitis in desert lizards.

According to research published in the September issue of the International Journal of Systematic and Evolutionary Microbiology, the discovery could help control the disease and protect endangered species.

Desert-dwelling lizards belonging to the genera Agama and Uromastyx that live in the arid and desert areas of North Africa are now bred in captivity in Europe. "The establishment of healthy captive populations is an important tool for the conservation of threatened species," said Professor An Martel from Ghent University, Belgium. "On the other hand, restocking of wild populations with captive bred animals carrying pathogens might compromise the survival of these wild populations. Skin diseases are highly prevalent in captive lizards."

Dermatitis is the most important known bacterial disease of desert lizards that prevents successful captive populations from being established. One example is the captive breeding programme of the rare Oman dab lizard (Uromastyx thomasi) a joint project between Germany and Oman, to which pathogens like this may pose a real threat.

"We isolated bacteria from five different desert lizards suffering from dermatitis, two agama lizards (Agama impalearis) and three spiny-tailed lizards (Uromastyx geyri and U. acanthinura)," said Professor Martel. "We could not identify the bacterium that was causing the disease, but the pathogen was the same in all five lizards."

The researchers looked at the genetic sequence of the bacterium and discovered it represents a new taxon and species. They have named the bacterium Devriesea agamarum (Devriesea referring to the veterinary microbiologist L.A. Devriese and agamarum after Agama, an Old World reptile). "We have demonstrated a causal relationship between this bacterium and skin lesions in desert-dwelling lizards," said Professor Martel. "This microbe is also related to bacteria that cause skin infections in humans."

The cases of dermatitis and septicaemia from which the new bacterium Devriesea agamarum was isolated are highly prevalent, especially in captive lizards. The researchers hope the identification of this species will contribute to our understanding of lizard skin disease and help develop control measures. "In the future we would like to study host-pathogen interactions, design treatments and investigate the use of a vaccination to prevent the development of disease caused by Devriesea agamarum," said Professor Martel.

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk/
http://www.sgm.ac.uk/pubs

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>