Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Disease Discovered

05.05.2009
In the genetic material of a young woman, an international team of scientists has discovered a genetic defect unknown so far. Due to this defect, the human body is not able any longer to repair certain DNA damages.

The DNA is being damaged continuously: It is affected by solar UV radiation just as by toxic substances from the environment. However, defects also occur during cell division: For this, the DNA has to be doubled and during this complex process defects occur occasionally.

On principle, the organism is able to repair such damages on its own, even serious damages like complete DNA double-strand breaks at the same site. In this case, first the so-called MRN protein complex is called into action: By means of this complex, the damage is detected and signaled to the repair system of the cell.

Important protein complex does not work properly

In the case of the young woman, this important protein complex does not work properly. The scientists are familiar with the complex: It consists of three proteins. For two of them, mutations are known for years. The newly discovered defect concerns the third protein which is referred to as RAD50 and which holds the ends of the DNA break together like a molecular clamp.

"We know the patient and her parents for almost 15 years now" says Prof. Detlev Schindler of the Institute for Human Genetics of the University of Würzburg. At the beginning, the scientists assumed that the girl was suffering from the so-called Nijmegen breakage syndrome (NBS). This congenital disease results from one of the defects of the protein complex known at that time. It is very rare and, statistically speaking, it only affects one in three million people.

Patient not affected by serious complications

The young woman shows symptoms that are typical for this disease: microcephaly, growth retardation as well as physical and mental retardation. In the course of time, it turned out that something was different with that woman, because she was not affected by the serious complications of the disease. She never experienced serious respiratory infections which very often are fatal for NBS patients. Her immune defence is normal. To date, she shows no signs of lymph gland cancer.

Now, the reason for those deviations has been found: The patient does not suffer from NBS, but from a disease which has been unknown so far. The scientists called it "NBS-like disorder". The mutation on which the disease is based has been characterized by the researchers from Würzburg in cooperation with colleagues from Hanover, Magdeburg, Berlin, Israel and Australia.

The woman's organism does not form enough RAD50 proteins. Moreover, the residual proteins do not execute their function sufficiently. "There are a residual quantity and a residual function, and possibly this is the only reason why the patient is still alive", says Detlev Schindler. Because if no RAD50 is available at all for an organism, it dies already as an embryo. This is known from mice showing the defect mentioned above. Perhaps the patient's mutation is so rare that she is one of only few living people suffering from this disease.

Benefits of the findings

What are the benefits of these findings? The patient herself cannot benefit from the findings. However, perhaps they might be helpful for the parents of children for whom there is a suspicion of having the Nijmegen breakage syndrome. Because now, by means of genetic diagnostics it is possible to verify whether they are really suffering from this serious syndrome or from the newly discovered disease.

The research results also offer benefits for science. "We have clarified another step going on during the repair of DNA double-strand breaks and we begin to understand which role it plays", says the professor from Würzburg. Currently, he and his team examine how the RAD50 protein works together with other proteins. This work shall provide further findings concerning the signaling pathways within the cell allowing the organism to eliminate damages of the genetic material.

For further information

Professor Detlev Schindler, Phone ++49 (931) 31-88075, schindler@biozentrum.uni-wuerzburg.de

"Human RAD50 Deficiency in a Nijmegen Breakage Syndrome-like Disorder", Regina Waltes, Reinhard Kalb, Magtouf Gatei, Amanda Kijas, Markus Stumm, Alexandra Sobeck, Britta Wieland, Raymonda Varon, Yaniv Lerenthal, Martin F. Lavin, Detlev Schindler, and Thilo Dörk, The American Journal of Human Genetics (2009), doi: 10.1016/j.ajhg.2009.04.010

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>