Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease decoded: Gene mutation may lead to development of new cancer drugs

01.10.2014

The discovery of a gene mutation that causes a rare premature aging disease could lead to the development of drugs that block the rapid, unstoppable cell division that makes cancer so deadly.

Scientists at the University of Michigan and the U-M Health System recently discovered a protein mutation that causes the devastating disease dyskeratosis congenita, in which precious hematopoietic stem cells can't regenerate and make new blood. People with DC age prematurely and are prone to cancer and bone marrow failure.

But the study findings reach far beyond the roughly one in 1 million known DC patients, and could ultimately lead to developing new drugs that prevent cancer from spreading, said Jayakrishnan Nandakumar, assistant professor in the U-M Department of Molecular, Cellular, and Developmental Biology.

The DC-causing mutation occurs in a protein called TPP1. The mutation inhibits TPP1's ability to bind the enzyme telomerase to the ends of chromosomes, which ultimately results in reduced hematopoietic stem cell division. While telomerase is underproduced in DC patients, the opposite is true for cells in cancer patients.

"Telomerase overproduction in cancer cells helps them divide uncontrollably, which is a hallmark of all cancers," Nandakumar said. "Inhibiting telomerase will be an effective way to kill cancer cells."

The findings could lead to the development of gene therapies to repair the mutation and start cell division in DC patients, or drugs to inhibit telomerase and cell division in cancer patients. Both would amount to huge treatment breakthroughs for DC and cancer patients, Nandakumar said.

Nandakumar said that a major step moving forward is to culture DC patient-derived cells and try to repair the TPP1 mutation to see if telomerase function can be restored. Ultimately, the U-M scientist hopes that fixing the TPP1 mutation repairs telomerase function and fuels cell division in the stem cells of DC patients.

"It's conceivable that with the recent advancement in human genome-editing technology, we could, in the not-so-distant future, repair the mutation in hematopoietic stem cells in the bone marrow of DC patients," Nandakumar said.

The findings also reinforce how one tiny change in an amino acid chain can cause devastating health consequences.

"It was surprising to us that just deleting one single amino acid in a protein chain that is 544 amino acids long can result in such a severe disease," Nandakumar said.

###

First author Hande Kocak conducted the research in Nandakumar's lab in the Department of Molecular, Cellular, and Developmental Biology. She is in the Department of Human Genetics at the U-M Medical School. Co-author Dr. Catherine Keegan is Kocak's mentor and has appointments in the departments of Human Genetics and Pediatrics.

The study, "Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1," appears in the journal Genes and Development.

Study: http://bit.ly/1pE6cqJ Jayakrishnan Nandakumar: http://bit.ly/1nFwdMf Molecular, Cellular, and Developmental Biology: http://www.lsa.umich.edu/mcdb

Laura Bailey | Eurek Alert!
Further information:
http://www.umich.edu/

Further reports about: Biology Cellular Disease Molecular cancer drugs cell division drugs hematopoietic repair stem cells

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>