Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease decoded: Gene mutation may lead to development of new cancer drugs

01.10.2014

The discovery of a gene mutation that causes a rare premature aging disease could lead to the development of drugs that block the rapid, unstoppable cell division that makes cancer so deadly.

Scientists at the University of Michigan and the U-M Health System recently discovered a protein mutation that causes the devastating disease dyskeratosis congenita, in which precious hematopoietic stem cells can't regenerate and make new blood. People with DC age prematurely and are prone to cancer and bone marrow failure.

But the study findings reach far beyond the roughly one in 1 million known DC patients, and could ultimately lead to developing new drugs that prevent cancer from spreading, said Jayakrishnan Nandakumar, assistant professor in the U-M Department of Molecular, Cellular, and Developmental Biology.

The DC-causing mutation occurs in a protein called TPP1. The mutation inhibits TPP1's ability to bind the enzyme telomerase to the ends of chromosomes, which ultimately results in reduced hematopoietic stem cell division. While telomerase is underproduced in DC patients, the opposite is true for cells in cancer patients.

"Telomerase overproduction in cancer cells helps them divide uncontrollably, which is a hallmark of all cancers," Nandakumar said. "Inhibiting telomerase will be an effective way to kill cancer cells."

The findings could lead to the development of gene therapies to repair the mutation and start cell division in DC patients, or drugs to inhibit telomerase and cell division in cancer patients. Both would amount to huge treatment breakthroughs for DC and cancer patients, Nandakumar said.

Nandakumar said that a major step moving forward is to culture DC patient-derived cells and try to repair the TPP1 mutation to see if telomerase function can be restored. Ultimately, the U-M scientist hopes that fixing the TPP1 mutation repairs telomerase function and fuels cell division in the stem cells of DC patients.

"It's conceivable that with the recent advancement in human genome-editing technology, we could, in the not-so-distant future, repair the mutation in hematopoietic stem cells in the bone marrow of DC patients," Nandakumar said.

The findings also reinforce how one tiny change in an amino acid chain can cause devastating health consequences.

"It was surprising to us that just deleting one single amino acid in a protein chain that is 544 amino acids long can result in such a severe disease," Nandakumar said.

###

First author Hande Kocak conducted the research in Nandakumar's lab in the Department of Molecular, Cellular, and Developmental Biology. She is in the Department of Human Genetics at the U-M Medical School. Co-author Dr. Catherine Keegan is Kocak's mentor and has appointments in the departments of Human Genetics and Pediatrics.

The study, "Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1," appears in the journal Genes and Development.

Study: http://bit.ly/1pE6cqJ Jayakrishnan Nandakumar: http://bit.ly/1nFwdMf Molecular, Cellular, and Developmental Biology: http://www.lsa.umich.edu/mcdb

Laura Bailey | Eurek Alert!
Further information:
http://www.umich.edu/

Further reports about: Biology Cellular Disease Molecular cancer drugs cell division drugs hematopoietic repair stem cells

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>