Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of variations in resistance to sulfadoxine across Africa

Findings lead experts to call for greater coordination of malaria control campaigns across continent

Researchers have discovered that malaria parasites in east and west Africa carry different resistance mutations, which suggests that the effectiveness of sulfadoxine as an antimalarial drug may vary across Africa.

The findings have implications for the manner in which malaria control campaigns are carried out, and suggest that coordinating efforts between parts of Africa that share similar patterns of resistance is likely to be more effective than working in isolation in each country.

Plasmodium falciparum (P. falciparum) a mosquito-borne parasite that causes malaria, kills nearly one million people a year, mostly in sub-Saharan Africa. Until recently, treatment in Africa relied on chloroquine and sulfadoxine-pyrimethamine. Unfortunately, parasites have developed resistance to both these drugs by acquiring 'resistance mutations', genetic changes that prevent the drugs from killing them.

Scientists have discovered that the mutations that caused resistance to chloroquine and pyrimethamine originated in Asia and spread into Africa in the late 1970s and early 1980s respectively. These mutations are now common across Africa and it is no longer possible to determine how they spread across the continent. However, the mutations that cause resistance to sulfadoxine only began to emerge in the mid-1990s, and have not yet spread evenly across Africa.

A study published today in PloS Medicine, and led by Dr. Cally Roper of the London School of Hygiene & Tropical Medicine, used genetic methods to characterise how resistance to sulfadoxine has spread across Africa, with a view to determining its geographical origins in order to help improve measures aimed at controlling the spread of drug-resistant P. falciparum.

The team analysed blood samples collected from patients with malaria in various African countries, and searched the scientific literature for other similar studies. They discovered five major variant genetic sequences (three of which contain mutations that confer various degrees of resistance to sulfadoxine in laboratory tests) to be present in Africa, each with a unique geographical distribution. In particular, the data showed that malaria parasites in east and west Africa carry different resistance mutations.

The findings show that sulfadoxine-resistant parasites have emerged independently at multiple sites in Africa, and that the molecular basis for sulfadoxine resistance is different in east and west Africa. This latter result may have clinical implications because it suggests that the effectiveness of sulfadoxine as an antimalarial drug may vary across the continent. They also suggest that economic and transport infrastructures may have played a role in governing recent parasite dispersal across the continent through their influence on the volume of human migration.

Dr. Roper comments: 'Our findings suggest that the effectiveness of sulfadoxine as an antimalarial drug may vary across Africa. They also point to the need to co-ordinate malaria control campaigns across socioeconomically linked areas in Africa, rather than focusing solely on national territories, in order to more effectively reduce the malaria burden in the continent'

Gemma Howe | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>