Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of variations in resistance to sulfadoxine across Africa

15.04.2009
Findings lead experts to call for greater coordination of malaria control campaigns across continent

Researchers have discovered that malaria parasites in east and west Africa carry different resistance mutations, which suggests that the effectiveness of sulfadoxine as an antimalarial drug may vary across Africa.

The findings have implications for the manner in which malaria control campaigns are carried out, and suggest that coordinating efforts between parts of Africa that share similar patterns of resistance is likely to be more effective than working in isolation in each country.

Plasmodium falciparum (P. falciparum) a mosquito-borne parasite that causes malaria, kills nearly one million people a year, mostly in sub-Saharan Africa. Until recently, treatment in Africa relied on chloroquine and sulfadoxine-pyrimethamine. Unfortunately, parasites have developed resistance to both these drugs by acquiring 'resistance mutations', genetic changes that prevent the drugs from killing them.

Scientists have discovered that the mutations that caused resistance to chloroquine and pyrimethamine originated in Asia and spread into Africa in the late 1970s and early 1980s respectively. These mutations are now common across Africa and it is no longer possible to determine how they spread across the continent. However, the mutations that cause resistance to sulfadoxine only began to emerge in the mid-1990s, and have not yet spread evenly across Africa.

A study published today in PloS Medicine, and led by Dr. Cally Roper of the London School of Hygiene & Tropical Medicine, used genetic methods to characterise how resistance to sulfadoxine has spread across Africa, with a view to determining its geographical origins in order to help improve measures aimed at controlling the spread of drug-resistant P. falciparum.

The team analysed blood samples collected from patients with malaria in various African countries, and searched the scientific literature for other similar studies. They discovered five major variant genetic sequences (three of which contain mutations that confer various degrees of resistance to sulfadoxine in laboratory tests) to be present in Africa, each with a unique geographical distribution. In particular, the data showed that malaria parasites in east and west Africa carry different resistance mutations.

The findings show that sulfadoxine-resistant parasites have emerged independently at multiple sites in Africa, and that the molecular basis for sulfadoxine resistance is different in east and west Africa. This latter result may have clinical implications because it suggests that the effectiveness of sulfadoxine as an antimalarial drug may vary across the continent. They also suggest that economic and transport infrastructures may have played a role in governing recent parasite dispersal across the continent through their influence on the volume of human migration.

Dr. Roper comments: 'Our findings suggest that the effectiveness of sulfadoxine as an antimalarial drug may vary across Africa. They also point to the need to co-ordinate malaria control campaigns across socioeconomically linked areas in Africa, rather than focusing solely on national territories, in order to more effectively reduce the malaria burden in the continent'

Gemma Howe | EurekAlert!
Further information:
http://www.lshtm.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>